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INTRODUCTION v

Introduction

The set of all rational functions over a field k, i. e. functions of the form p(x)
q(x)

,

where p(x) and q(x) are polynomials over k, form a field k(x) under the usual
arithmetic operations. As in the case of number fields, if we adjoin a root of
an irreducible polynomial f(x, t) to k(x) we again obtain a field, say F , that
contains k(x) as a subfield. The field F is called an algebraic function field.
If k is a finite field, then F is said to be global.

Since the 1930s it is well known that the global function fields together with
the number fields form a class of fields, called global fields. These admit a
class field theory, that is, they allow a description of all Abelian extensions.
(An Abelian extension is a Galois extension whose automorphism group is
Abelian.) Global function fields have been investigated by pure mathemati-
cians ever since. However, while it is relatively easy to compute examples of
number fields by hand this is hard in the case of function fields, because of
the complexity of even basic operations like addition of elements.

While computations in number fields have been the focus of research in com-
puter algebra since the 1970s, function fields have been neglected until re-
cently. They were deemed to be too complicated. However, the development
of highly efficient methods in the number field case together with the avail-
ability of relatively cheap fast computers brought the function fields into
interest of computational researchers.

Work by the Russian mathematician Goppa (see for instance [Gop81],
[Gop88]) added a new dimension to the interest in function fields. He demon-
strated that they can be used to define good error-correcting codes, i. e. codes
that allow the correction of many data transmission or storage errors in com-
parison to their size. These codes are dramatically better than any previ-
ously constructed codes. By “better” we mean that the Goppa codes allow
the correction of more transmission errors in comparison to the block length
(number of symbols transmitted) of the code.

Let F = k(x)[t]/f(x, t) be a function field. A place of F is called rational if
it has degree 1. The rational places correspond to the roots of f in k. If one
considers f as defining a curve, then the set of rational places corresponds
to the set of points on the curve over k. However, as our approach is based
entirely on function field methods, we will use function field terminology.

In order to obtain good codes using Goppa’s construction, it is necessary to
find function fields having as many rational places as possible. A field E
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with a large number of rational places may be constructed by taking a small
field F where the number of places is known and constructing extensions E
of F such that the splitting behaviour of the places is known in advance from
theory. Class field theory is the most powerful technique currently available
for building such extensions. In particular, using class field towers, it is
possible to prove the existence of large good codes.

To be able to work efficiently with the resulting Abelian extensions of large
degree it is important to develop explicit techniques for the fast computation
of integral closures of Kummer extensions, Artin-Schreier-Witt extensions
and their composita. In particular Artin-Schreier-Witt extensions have never
been the focus of algorithmic investigation.

Integral bases of Kummer extensions of number fields were already treated by
Daberkow ([Dab95]). He only obtains integral bases of Kummer extensions
of prime degree directly. Integral bases of general cyclic Kummer extensions
have to be computed in steps of prime degree, which involves computations
in relative extensions of the ground field.

A (general) Kummer extension is an Abelian extension of exponent n of a field
F which contains the set of all n-th roots of unity, where the characteristic
of F is zero or coprime to n. Abelian extensions of a field F of exponent
pr, where p > 0 is the characteristic of F , are called Artin-Schreier-Witt
extensions.

The existing general methods to determine integral closures are based on
the Round 2 algorithm (see for instance [PZ89], [Fri97] and [Fri00]). This
approach is of limited use in fields of large degree. In this thesis we develop a
special method to compute an as small as possible set of “small” generators
of the integral closures of Kummer and Artin-Schreier-Witt extensions.

A brief summary of this thesis follows.

Besides two short introductory sections about localization and Witt vectors,
the main part of the first chapter introduces all the needed definitions, nota-
tions and facts about algebraic function fields. Moreover, we have developed
an algorithmic version of the strong approximation theorem, a tool which is
frequently used in this thesis.

In the second chapter we give a detailed exposition of General Kummer
Theory, which describes an abstract method for the characterization of all
Abelian extension of a given field.

In the third chapter we use the results of chapter two to describe Kummer
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and Artin-Schreier-Witt extensions and list some important properties.

The fourth chapter contains the main results of this thesis, namely the com-
putation of integral closures of Kummer and Artin-Schreier-Witt extensions.
Let F be a function field, ∅ 6= S $ PF a set of places of F and E a Kummer
or an Artin-Schreier-Witt extension of F . We present algorithms for com-
puting the set of OS(E)-integral elements of E. This is done by calculating
for each P ∈ S a local integral basis for E/F . The set Ω which consists of all
these elements is then a set of generators of OS(E) over OS (this is assured
by Theorem 4.1.1).

Our algorithms were implemented using the algorithmic number theory tool
MAGMA [C+04]. In the fifth chapter we give examples which demonstrate
the efficiency of our method for computing integral closures by comparing it
with the general method.
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Chapter 1

Foundations

1.1 Localization of Rings and Modules

In this section we introduce very shortly some basic facts about localization.
We mainly only use the definitions and results of this section in Proposition
1.2.8 and Theorem 4.1.1. We refer the reader for instance to Chapter 5 and
9 of [AB74] (this is the source where we are citing from).

Let A be a multiplicative subset of an integral domain R, i. e. a subset of
R with 1 ∈ A and 0 6∈ A which is closed under multiplication. The subring
RA of the quotient field Q(R) of R consisting of all quotients r

s
with r ∈ R

and s ∈ A is called the localization of R with respect to A. We denote
the canonical injection R ↪→ RA by ι.

For each R-module M consider the equivalence relation ∼ on M × A given
by

(m1, s1) ∼ (m2, s2) :⇐⇒ ∃s ∈ A with s(m1s2 −m2s1) = 0.

We denote the equivalence class of an element (m, s) by m
s
. Now the set of

equivalence classes (M × A)/A becomes an RA-module in an obvious way.
We call this module the localization of M with respect to A and denote
it by MA. We can use the canonical morphism R ↪→ RA to consider M as
an R-module. The canonical injection M ↪→MA is then easily seen to be an
R-module homomorphism.

From now on all rings are supposed to be integral domains.

1.1.1 Proposition ([AB74, 1.5, p. 314]). Let A be a multiplicative subset

1
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of a ring R.

(i) If f : R −→ T is a ring morphism with the property that f(s) is a unit
for all s ∈ A, then there is a unique ring morphism ψ : RA −→ T such
that the following diagram commutes:

R
f

T

RA

ψ

(ii) Let h : R −→ R′ be a ring morphism with the property that h(s) is a unit
in R′ for all s ∈ A. Suppose that for each ring morphism f : R −→ T
with f(s) is a unit in T for all s ∈ A there is a unique ring morphism
φf : R′ −→ T such that the following diagram commutes:

R

h

f
T

R′

φf

If now T equals RA and f is the canonical injection ι : R ↪→ RA, then
φι is a ring isomorphism.

1.1.2 Proposition ([AB74, 2.2, p. 317]). Let A be a multiplicative subset
of a ring R.

(i) Let M be an R-module. If M is generated by a subset X of M as an
R-module, then the image of X in MA under the canonical morphism
generates MA as an RA-module.

(ii) If f : M −→ N is an R-module homomorphism, then there exists a
unique morphism fA : MA −→ NA such that the following diagram
commutes:

M
f

N

MA fA
NA
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The only example of localization we will consider is the following: For any
prime ideal p of a ring R, the set A := R\p is a multiplicative subset of R. In
this case the localization of R (respectively of an R-module M) with respect
to A is called the localization of R (respectively M) at p and is denoted
by Rp (respectively Mp). If f : M −→ N is an R-module homomorphism,
then the unique homomorphism Mp −→ Np of the last proposition is denoted
by fp.

We now finish this first section with the following

1.1.3 Proposition ([AB74, 3.10, p. 323]). Let f : M −→ N be an R-
module homomorphism. Then f is a monomorphism (epimorphism, iso-
morphism) iff fp is a monomorphism (epimorphism, isomorphism) for all
maximal ideals p in R.

1.2 Algebraic Function Fields

In this section we give all the necessary basic definitions, notations and facts
about algebraic function fields which are used in this thesis. Unless otherwise
stated, we will very closely follow the book of Stichtenoth [Sti93], Chapters
I and III.

Throughout this section, let k be an arbitrary perfect field. An (algebraic)
function field F/k (of one variable) over k is a finite algebraic extension
of the rational function field k(x) for some x ∈ F which is transcendental
over k. k is the constant field and the algebraic closure k̃ of k in F the full
constant field of F . If k is finite then F/k is a global function field. The
rational function field is no invariant of F/k, since it depends on the choice
of x. There always exist x and ρ in F such that

· f(x, ρ) = 0 for some irreducible polynomial f ∈ k[x, t] which is monic
and separable with respect to t and degt f = n.

· F = k(x, ρ) and [F : k(x)] = n.

Such x is called a separating element for F/k.

1.2.1 Definition and Proposition. A ring k ( O ( F with z ∈ O or
z−1 ∈ O for all 0 6= z ∈ F is called a valuation ring of F/k. Such a ring
has the following properties:
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(i) O is a local ring with (unique) maximal ideal P = O \O∗ where O∗ is
the set of units of O.

(ii) For 0 6= a ∈ F : a ∈ P ⇐⇒ a−1 /∈ O.

(iii) P is principal, i. e. P = O · t for some t ∈ O. t is called a prime
element for P .

(iv) Each element 0 6= a ∈ F has a unique representation of the form
a = utn for some u ∈ O∗ and some integer n.

A place of F is the unique maximal ideal of some valuation ring O of F .
Since O is uniquely determined by P (1.2.1(ii)), we write OP := O and call
OP the valuation ring of P . We denote by PF the set of places of F .

1.2.2 Definition. A discrete valuation of F/k is a function v : F →
Z ∪ {∞} with the following properties:

(i) v(a) =∞ ⇐⇒ a = 0.

(ii) v(ab) = v(a) + v(b) for all a, b ∈ F .

(iii) v(a+ b) ≥ min{v(a), v(b)} for all a, b ∈ F .

(iv) v(z) = 1 for some z ∈ F .

(v) v(a) = 0 for any 0 6= a ∈ k.

A stronger version of (iii) is given by

1.2.3 Lemma (Strict Triangularity). If v(a) 6= v(b), then

v(a+ b) = min{v(a), v(b)}.

We now use the representation of an element 0 6= a ∈ F given in 1.2.1(vi) to
define a discrete valuation vP for any place P of F by

vP (0) :=∞ and vP (a) = vP (utn) := n

(note that this definition does not depend on the choice of the prime element
t). Then

OP = {a ∈ F | vP (a) ≥ 0},

O∗
P = {a ∈ F | vP (a) = 0}
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and

P := {a ∈ F | vP (a) > 0}.

If on the other hand v is a discrete valuation of F/k, then the set

{a ∈ F | v(a) > 0}

is a place of F and

{a ∈ F | vP (a) ≥ 0}

is the corresponding valuation ring. To summarize the above, one has bijec-
tions between the sets of places, valuations and valuation rings of F given
by

P ←→ vP ←→ OP .

The field OP := OP/P is called the residue class field of P and the integer
[OP : k] the degree of P .

1.2.4 Definition. Let F/k be a function field with full constant field k. A
function field E/K (where K is the full constant field of E) is called an
algebraic extension of F/k, if E/F is an algebraic field extension and
k ⊆ K. The extension is a constant field extension if E = FK. A place
P ′ ∈ PE is said to lie over P ∈ PF if P ⊆ P ′. We also say P ′ is above P ,
P ′ is an extension of P or P lies under P ′ and write P ′|P .

1.2.5 Remark. In the situation of 1.2.4 the following three assertions are
equivalent:

(1) P ′|P .

(2) OP ⊆ OP ′.

(3) There exists an integer e := e(P ′|P ) ≥ 1 with vP ′(x) = evP (x) for all
x ∈ F .

If P ′|P then P = P ′ ∩ F and OP = OP ′ ∩ F . For each P ′ ∈ PE there is
exactly one place P ∈ PF lying under P ′, namely P ′ ∩ F . On the other
hand, any place P ∈ PF has at least one, but only finitely many extensions
P ′ ∈ PE. Moreover, we have a canonical embedding OP ↪→ OP ′ .

f(P ′|P ) := [OP ′ : OP ] is called the relative degree of P ′ over P . It is finite
iff E/F is a finite extension. e(P ′|P ) is called the ramification index of P ′
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over P . If the function field L is an algebraic extension of E and P ′′ ∈ PL a
place above P ′, then

e(P ′′|P ) = e(P ′′|P ′)e(P ′|P ) and f(P ′′|P ) = f(P ′′|P ′)f(P ′|P ).

The extension P ′|P is ramified if e(P ′|P ) > 1, otherwise it is unramified.
P is called totally ramified in E if there is exactly one extension P ′ of P
in E and e(P ′|P ) = [E : F ]. P is completely inert in E if there is exactly
one extension P ′ of P in E and f(P ′|P ) = [E : F ]. And P is completely
decomposed in E if there are exactly n := [E : F ] extensions P1, . . . , Pn of
P . To finish this remark suppose P1, . . . , Pr are all the places of E above P .
Then

r∑

i=1

e(Pi|P )f(Pi|P ) = [E : F ]. (1.2.a)

The following remark describes the relatively easy ramification behaviour
of places in a finite Galois extension. Recall that a finite algebraic field
extension E/F is Galois if the automorphism group

Aut (E/F ) := {σ : E → E | σ is an automorphism

and σ(a) = a for each a in F}

has order [E : F ]. In such a case, Aut (E/F ) is called the Galois group of
E/F and is denoted by Gal(E/F ).

1.2.6 Remark. (Hilbert’s ramification theory) Let E/F be a finite
Galois extension of function fields with Galois group G := Gal(E/F ) and
P1, . . . , Pr be all the extensions of a place P of F to E. Then all the ramifi-
cation indices and relative degrees of Pi|P are equal, i. e.

e(Pi|P ) = e(Pj|P ) =: e(P ) and f(Pi|P ) = f(Pj|P ) =: f(P ) for all i, j

and therefore (see (1.2.a)) e(P )f(P )r = [E : F ]. For each 1 ≤ i ≤ r we call

GZ(Pi|P ) := {σ ∈ G | σ(Pi) = Pi}

the decomposition group and

GT (Pi|P ) := {σ ∈ G | vPi
(σz − z) > 0 for all z ∈ OPi

}

the inertia group of Pi over P . Obviously we have

GT (Pi|P ) ⊆ GZ(Pi|P ) ⊆ G.
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The field Zi := Z(Pi|P ) := FixE
‹

F

(
GZ(Pi|P )

)
is called the decomposition

field and the field Ti := T (Pi|P ) := FixE
‹

F

(
GT (Pi|P )

)
is called the inertia

field of Pi over P . If we denote by PZi
the restriction of Pi to Zi and by PTi

the restriction of Pi to Ti, then we have the following diagram:

E Pi

e(Pi|PTi
) = e(Pi|P ) = [E : Ti]

and f(Pi|PTi
) = 1

Ti PTi

f(PTi
|PZi

) = f(Pi|P ) = [Ti : Zi]
and e(PTi

|PZi
) = 1

Zi PZi

e(PZi
|P ) = f(PZi

|P ) = 1
and [Zi : F ] = r

F P

In particular, if E/F is cyclic of degree pn for a prime p, then we have exactly
n− 1 intermediate fields of E/F , say

F := E0 ⊆ E1 ⊆ · · · ⊆ En−1 ⊆ En =: E,

and [Er : Er−1] = p for all 1 ≤ r ≤ n. From the above it then follows that
there exist 1 ≤ d ≤ t ≤ n such that Zi = Zj =: Z = Ed and Ti = Tj =: T =
Et for all 1 ≤ i, j ≤ n. This means that P is completely decomposed in Z/F ,
each PZi

is completely inert in T/Z and each PTi
is totally ramified in E/T .

1.2.7 Definition. A ring k ⊂ R ⊂ F which is not a field is called a subring
of F/k. An element a of F is called integral over R or R-integral if
f(a) = 0 for some monic polynomial f(X) ∈ R[X]. The ring

Cl(R,F ) := {a ∈ F | a is integral over R}

is called the integral closure of R in F . Let Q be the quotient field of R
in F . R is called integrally closed if Cl(R,Q) = R.

A ring R ⊂ F which is of the form

R = OS := {a ∈ F | vP (a) ≥ 0 for all P ∈ S} =
⋂

P∈S

OP

for ∅ 6= S $ PF is called a holomorphy ring of F/k. A holomorphy ring is
also a subring of F/k.

The following proposition lists some properties of holomorphy rings:
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1.2.8 Proposition. (i) For P ∈ PF we have OS ⊆ OP ⇐⇒ P ∈ S.

(ii) The quotient field of OS is F and OS is integrally closed.

(iii) OS is a Dedekind domain.

(iv) There is a 1-1-correspondence between S and the set of maximal ideals
of OS , given by

P ←→ P ∩ OS .

(v) For each P ∈ S, the localization (OS)P∩OS
of OS at P equals OP (this

follows from 1.1.1(ii)).

(vi) If S is non empty and finite, then OS is a principal ideal domain.

For a subring R of F we define the set Γ(R,F ) := {P ∈ PF | R ⊆ OP}.
Then ∅ 6= Γ(R,F ) $ PF and we have

Cl(R,F ) = OΓ(R,F ).

This implies that if E is a finite separable extension of F ,

Cl(R,E) = Cl
(
Cl(R,F ), E

)
.

For ∅ 6= S $ PF we then get

Cl(OS , E) = OΓ(OS ,E)

= {a ∈ E | vP ′(a) ≥ 0 ∀P ′|P, P ∈ S}

=
⋂

P ′|P
P∈S

OP ′.
(1.2.b)

1.2.9 Remark. If E is a finite separable extension of F and P ∈ PF or
∅ 6= S $ PF , then we sometimes write OP (E) for Cl(OP , E) and OS(E) for
Cl(OS , E), respectively.

For a place P of F (a set ∅ 6= S $ PF ) we call the elements of OP and
OP (E) (OS and OS(E), respectively) integral over P or simply P -integral
(integral over S or S-integral, respectively).

We now describe some special cases of holomorphy rings of a function field
F/k. The set of places of the rational function field k(x)/k is given by

Pk(x) = {P∞} ∪ {Pπ | π ∈ k[x] irreducible},

where
P∞ := {g/h | g, h ∈ k[x], deg g < deg h}
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and
Pπ := {g/h | g, h ∈ k[x], h 6= 0, π | g, π - h}.

The corresponding valuation rings are

O∞ := {g/h | g, h ∈ k[x], deg g ≤ deg h}

and
Oπ := k[x]π := {g/h | g, h ∈ k[x], h 6= 0, π - h}

respectively, and we have

k[x] =
⋂

π∈k[x]
irreducible

Oπ.

We define by
P

∞

F := {P ∈ PF | P |P∞},

the set of infinite places and by

P
0

F := PF \ P
∞

F = {P ∈ PF | ∃π ∈ k[x], π irreducible and P | Pπ},

the set of finite places of F . We call

O
∞

F := O
P
∞

F
= Cl(O∞, F ).

the infinite maximal order and

OF := O0
F := O

P
0
F

= Cl(k[x], F )

the finite maximal order of F/k.

1.2.10 Theorem. Let R be an integrally closed subring of F/k with quotient
field F and let E be a finite separable extension of F of degree n. Then there
exists a basis of E/F which is contained in Cl(R,E). If R is a principal ideal
domain, then there exists a basis {α1, . . . , αn} of E/F with

Cl(R,E) =

n∑

i=1

Rαi.

From (1.2.b) and 1.2.10 it follows that for a place P in F the integral closure
of its valuation ring OP in E is

OP (E) := Cl(OP , E) =
⋂

P ′|P

OP ′ = {a ∈ E | vP ′(a) ≥ 0 ∀P ′|P} (1.2.c)



10 CHAPTER 1. FOUNDATIONS

and that there exists a basis {α1, . . . , αn} of E/F with

Cl(OP , E) =
n∑

i=1

OP · αi ,

called an integral basis of Cl(OP , E) over OP or a local integral basis of
E/F for P .

1.2.11 Remark. Throughout this thesis we use the following notation: if
E/F is a field extension and y an element of E, then we write

χ`

y, E
‹

F
´(T ) ∈ F [T ]

for the the minimal polynomial of y over F .

We finish this section with some statements concerning the ramification be-
haviour of places and special integral bases. For a place P of a function field
F and a polynomial φ(T ) =

∑
ciT

i ∈ OP [T ] we set

φ(T ) :=
∑

ciT
i ∈ OP [T ],

where ci ∈ OP = OP/P is the residue class of ci ∈ OP .

1.2.12 Theorem. Let E = F (y) be an extension of a function field F of
degree n, P a place of F and y integral over P . Set χ(T ) := χ`

y, E
‹

F
´(T ).

Let

χ(T ) =
r∏

i=1

γi(T )εi

be the decomposition of χ(T ) into irreducible factors over OP , i. e. the poly-
nomials γi(T ) are monic, irreducible, pairwise distinct and εi ≥ 1. For each
γi(T ) we choose a monic polynomial φi(T ) ∈ OP [T ] with φi(T ) = γi(T ) and
deg φi(T ) = deg γi(T ). Then there are for each 1 ≤ i ≤ r places Pi of E over
P with

φi(y) ∈ Pi and f(Pi|P ) ≥ deg γi(T ).

If moreover {1, y, . . . , yn−1} is an integral basis for P , then there exists for
each 1 ≤ i ≤ r exactly one place Pi of E over P with

φi(y) ∈ Pi, f(Pi|P ) = deg γi(T ), e(Pi|P ) = εi,

and P1, . . . , Pr are the only places of E over F .
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Proof. See for instance [Sti93, III.3.7].

1.2.13 Proposition. Let E be a finite separable extension of a function field
F of degree n.

(i) Suppose E = F (y) and χ(T ) = χ`

y, E
‹

F
´(T ) is the minimal polynomial

of y. If for some P ∈ PF we have

χ(T ) ∈ OP [T ] and vP ′(χ′(y)) = 0

for all P ′ ∈ PE with P ′|P then P is unramified in E and {1, y, . . . , yn−1}
is a local integral basis for P in E/F .

(ii) If a place Q′|Q (where Q ∈ PF and Q′ ∈ PE) is totally ramified in E/F
and π a prime element for Q′, then {1, π, . . . , πn−1} is a local integral
basis for Q in E/F .

Proof. [Sti93, III.5.11 and III.5.12].

1.3 Strong Approximation

A main tool for all results presented in this thesis is the strong approximation
theorem. Since it is also of independent interest, we give an algorithmic
solution in this section.

1.3.1 Theorem (Strong Approximation). Let F/Fq be a function field,
∅ 6= S $ PF and P1, . . . , Pr ∈ S. Suppose there are given a1, . . . , ar ∈ F and
n1, . . . , nr ∈ Z. Then there exists an element z ∈ F such that

vPi
(z − ai) = ni 1 ≤ i ≤ r, and

vP (z) ≥ 0 for all P ∈ S \ {P1, . . . , Pr}.
(1.3.a)

Our proof follows Stichtenoth [Sti93], but is constructive.

1.3.2 Lemma. Suppose we are in the situation of the theorem. Then there
exists an element y ∈ F such that

vPi
(y − ai) > ni 1 ≤ i ≤ r, and

vP (y) ≥ 0 for all P ∈ S \ {P1, . . . , Pr}.
(1.3.b)
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Proof. For 1 ≤ i ≤ r we set ñi := ni + 1. We take a divisor A of positive
degree whose support is disjoint to S. Then there exists l ∈ N such that the
divisor D := lA−

∑r
j=1 ñjPj is non-special.

We now describe how to find for each 1 ≤ i ≤ r an element yi ∈ F with

vPi
(yi − ai) ≥ ñi 1 ≤ i ≤ r,

vPj
(yi) ≥ ñj 1 ≤ i ≤ r, j 6= i and

vP (yi) ≥ 0 for all P ∈ S \ {P1, . . . , Pr}.

(1.3.c)

The element y =
∑r

i=1 yi then satisfies (1.3.b).

If vPi
(ai) ≥ ñi we can set yi := 0 and are done.

Suppose now vPi
(ai) < ñi. The non-speciality ofD implies AF = AF (D) + F.

Therefore there exists β ∈ F such that (β − αi) ∈ AF (D), where αi ∈ AF is
the adele whose Pi-component equals ai and which is zero at all other com-
ponents. This implies vPi

(β − ai) ≥ ñi > vPi
(ai). Strict triangularity then

yields vPi
(β) = vPi

(ai), therefore

β ∈ L := L
(

lA−
r∑

j=1

ñjPj + ñiPi − vPi
(ai)Pi

)

and yi := β satisfies (1.3.c). We finish the proof by showing how to actually
compute β:

[i] Let B := b1, . . . , bs be a basis of L (for the computation of the Riemann-
Roch spaces we refer to [Hes02]).

[ii] For each element γ ∈ {ai} ∪ B we compute a (finite) series expansion
in the following sense: Let π be a prime element of Pi and ω1, . . . , ωl
a set of representatives of an Fq-basis of the residue class field of Pi.
We set γ̃ := γπ−vPi

(ai) and then, iteratively for vPi
(ai) ≤ w ≤ ñi, we

lift γ̃(Pi) to γw =
∑l

µ=1 γw,µωµ and do γ̃ ← γ̃−γw

π
. This yields the

expansion
∑ñi

w=vPi
(ai)

γwπ
w of γ. (Here, γ̃(Pi) denotes the residue class

of γ̃ modulo Pi.)

[iii] We construct a matrix M over Fq whose columns correspond to the
elements of B. Let c = (c1, . . . , cs) be such that Mc = ai (from what
was said above it is clear that c exists.)

[iv] Set β :=
∑s

v=1 cvbv.
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We summarize the proof of the lemma in the following algorithm:

1.3.3 Algorithm.

Input: ∅ 6= S $ PF , P1, . . . , Pr ∈ S a1, . . . , ar ∈ F , n1, . . . , nr ∈
Z.

Output: y ∈ F such that vPi
(y − ai) > ni for all 1 ≤ i ≤ r and

vP (y) ≥ 0 for all P ∈ S \ {P1, . . . , Pr}.

1. for 1 ≤ i ≤ r do

2. ñi := ni + 1.

3. end for

4. Choose a divisor A with degA > 0 whose support is disjoint to S.

5. Compute l ∈ N such that D := lA−
∑r

j=1 ñjPj is non-special.

6. for 1 ≤ i ≤ r do

7. if vPi
(ai) ≥ ñi then

8. yi := 0

9. else

10. Compute β as described in [i]-[iv] in the above proof.

11. yi := β.

12. end if

13. end for

14. y =
∑r

i=1 yi.
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Proof of Theorem 1.3.1. We use algorithm 1.3.3 to compute y ∈ F with

vPi
(y − ai) > ni 1 ≤ i ≤ r, and

vP (y) ≥ 0 for all P ∈ S \ {P1, . . . , Pr}

and ỹ ∈ F with

vPi
(ỹ − πni

i ) > ni 1 ≤ i ≤ r, and

vP (ỹ) ≥ 0 for all P ∈ S \ {P1, . . . , Pr}.

The strict triangle equation then shows that the element z := y + ỹ satisfies
(1.3.a).

1.4 The Ring of Witt vectors

In this section we introduce the definition as well as important properties of
Witt vectors, which yield a basic tool for describing all Abelian extensions
of degree pn of a field of characteristic p > 0 (see Section 3.2). Witt vectors
were constructed by Witt in his famous work “Zyklische Körper und Algebren
der Charakteristik p vom Grad pn” ([Wit36]). Other references we use are
[Sch36a], [Sch36b], [Lor90] and [Has80, p. 156-161].

Let p be a natural prime number and

Z[X1, Y1, X2, Y2, . . . , Xn, Yn, . . . ]

the polynomial ring in countably many variables over the the ring Z. We
consider vectors Z = (Z1, Z2, . . . ) with Zi ∈ Z[X1, Y1, X2, Y2, . . . ] and define
for n = 1, 2, . . .

Z(n) :=
n∑

i=1

pi−1Zpn−i

i = Zpn−1

1 + pZpn−2

2 + · · ·+ pn−1Zn.

These so called “Ghost components” Z (1), Z(2), . . . of Z uniquely determine
the vector Z: Using the Frobenius map

F(Z) := (Zp
1 , Z

p
2 , . . . ) (1.4.a)

the above definitions become

Z(1) = Z1,

Z(n) = (F(Z))(n−1) + pn−1Zn, n > 1.
(1.4.b)
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From these formulas we can derive the components Zi of Z as well defined
polynomial expressions in Z(1), Z(2), . . . with coefficients in Z[ 1

p
], e.g.,

Z1 = Z(1),

Z2 = −
1

p
(F(Z))(1) +

1

p
(Z(2)).

Let ∗ be one of the operations + or ·. For vectors A := (A1, A2, . . . ) and
B := (B1, B2, . . . ) with components in Z[X1, Y1, X2, Y2, . . . ] we define A ∗ B
by

(A ∗B)(n) := A(n) ∗B(n), (1.4.c)

e.g.,

(A ∗B)1 = A1 ∗B1,

(A± B)2 = (A2 ± B2)−
(A1 ± B1)

p − (Ap1 ±B
p
1)

p

= (A2 ± B2)−

p−1
∑

i=1

1

p

(
p
i

)

Ap−i1 (±B1)
i −

(±1)p − (±1)

p
Bp

1 ,

(A ·B)2 = (Ap1B2 + A2B
p
1) + pA2B2.

In these examples all the polynomials on the right side have integral coeffi-
cients. It is a very important fact, that this holds generally.

1.4.1 Proposition. The polynomials S∗
n(A,B) := (A∗B)n only have integral

coefficients, i. e.

S∗
n(A,B) ∈ Z[X1, Y1, X2, Y2, . . . , Xn, Yn].

Proof. See for instance [Lor90, p. 139] or [Has80, pp. 157-159].

1.4.2 Proposition.

S±
i (A,B) = (A± B)i

= Ai ±Bi +
Api−1 ± B

p
i−1 − (A± B)pi−1

p

+
Ap

2

i−2 ±B
p2

i−2 − (A±B)p
2

i−2

p2
+ · · ·

· · ·+
Ap

i−1

1 ± Bpi−1

1 − (A±B)p
i−1

1

pi−1

(1.4.d)
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Proof. For all vectors Z we have

(
F(Z)

)(i−1)
=

(
F2(Z)

)(i−2)
+ pi−2

(
F(Z)

)

i−1

=
(
F3(Z)

)(i−3)
+ pi−3

(
F2(Z)

)

i−2
+ pi−2

(
F(Z)

)

i−1

· · ·

=
(
F i−1(Z)

)(1)
+ p

(
F i−2(Z)

)

2
+ p2

(
F i−3(Z)

)

3
+ · · ·

· · ·+pi−3
(
F2(Z)

)

i−2
+pi−2

(
F(Z)

)

i−1

= Zpi−1

1 + pZpi−2

2 + p2Zpi−3

3 + · · ·+ pi−3Zp2

i−2 + pi−2Zp
i−1

(1.4.e)

From (1.4.b) we get

(A± B)(i) =
(
F(A± B)

)(i−1)
+ pi−1(A±B)i

and from (1.4.c)

(A±B)(i) = A(i) ± B(i)

=
(
F(A)

)(i−1)
+ pi−1(A)i ±

(
F(B)

)(i−1)
± pi−1(B)i,

hence

(A± B)i = Ai ±Bi +

(
F(A)

)(i−1)
±

(
F(B)

)(i−1)
−

(
F(A±B)

)(i−1)

pi−1
.

The result then follows from (1.4.e).

Now we have seen that (1.4.c) defines a ring structure on the set of vectors
Z = (Z1, Z2, . . . ) with Zi ∈ Z[X1, Y1, X2, Y2, . . . ]. The zero element is the
vector (0, 0, . . . ) (since all its ghost components are 0) and the one element
is the vector (1, 0, 0, . . . ) (since all its ghost components are 1). One easily
verifies

Z = (Z1, . . . , Zn, 0, . . . ) + (0, . . . , 0, Zn+1, Zn+2, . . . ) (1.4.f)

for each vector Z = (Z1, Z2, . . . ).

Let now A be an arbitrary commutative ring with 1. We denote by W (A)
the set of all vectors x = (x0, x1, . . . ) with xi ∈ A. Although in this case the
ghost components

x(n) :=

n∑

i=1

pi−1xp
n−i

i (1.4.g)
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of x in general do not uniquely determine x (e.g., if A is of characteristic p),
one can show that by the above definitions

(x ∗ y)n = S∗
n(x, y) = S∗

n(x1, y1, x2, y2, . . . , xn, yn) (1.4.h)

the set W (A) becomes a commutative ring with zero element (0, 0, . . . ) and
one element (1, 0, 0, . . . ). W (A) is called the Ring of Witt vectors over
A.

1.4.3 Remark. In order to write down some important properties of Witt
vectors we first need to generalize slightly some of our earlier notations. A
discrete valuation of a field E is a surjective mapping v : E → Z ∪ {∞}
with the following properties:

(i) v(a) =∞ ⇐⇒ a = 0.

(ii) v(ab) = v(a) + v(b) for all a, b ∈ E.

(iii) v(a+ b) ≥ min{v(a), v(b)} for all a, b ∈ E.

Like in Section 1.2 one has the Strict Triangle Inequality

v(a+ b) = min{v(a), v(b)} if a, b ∈ E and v(a) 6= v(b).

The pair (E, v) has the following properties:

(i) The set
R := {a ∈ E | v(a) ≥ 0}

is a subring of E, the valuation ring of E with respect to v.

(ii) E is the quotient field of R.

(iii) p := {a ∈ E | v(a) > 0} is an ideal of R, the valuation ideal with
respect to v.

(iv) R∗ = R \ p, i. e. p is a maximal ideal of R and each ideal a ( R of R is
contained in p. Therefore R is a local ring with maximal ideal p.

(v) The field R/p is called the residue class field of E with respect to v.
Let now E be a perfect field of characteristic p. The p-fold sum of a vector
x ∈ W (E) is given by

px = x + · · ·+ x = (0, xp1, x
p
2, . . . ). (1.4.i)

Therefore and since E is perfect, i. e. E = Ep, the ideal pnW (E) of W (E)
equals the set of vectors whose first n component are zero. Then we can
define a map v : W (E)→ Z ∪ {∞} by

v(x) := min{i | xi+1 6= 0}.
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1.4.4 Proposition. (i) W (E) has no zero divisors. Its quotient field is
denoted by Q(E).

(ii) The canonical extension of the map v to Q(E) is a discrete valuation
with valuation ring W (E) and valuation ideal pW (E). Therefore the
units of W (E) are exactly the vectors whose first component is not zero.

(iii) Q(E) has characteristic 0.

(iv) W (Fp) = Zp.

For any natural n > 0 let us now consider the Ring Wn(E) of Witt vectors
of length n (consisting of the “truncated” vectors x = (x1, . . . , xn)). Here
addition and multiplication is defined in the same way as above for the first
n coordinates. For this case we only note the following

1.4.5 Proposition. (i) The units of Wn(E) are exactly the vectors whose
first component is not zero.

(ii) Wn(Fp) = Z/pnZ.



Chapter 2

General Kummer Theory

General Kummer theory provides us with an abstract tool to describe all
Abelian extensions of a given field F . The most important result for this
thesis is corollary 2.3.2 to the main Theorem 2.1.11. This corollary charac-
terizes all cyclic extensions of F of a given degree.

Since the way in which the representation of general Kummer theory is given
in this chapter (and later used in this thesis) follows in most parts the lecture
script “Algebra 2” held by Florian Heß at TU Berlin in the winter semester
of 2003, we have decided to include all proofs. For other sources we refer the
reader for instance to [Neu92, Chapter IV] or [Coh99, 10.2].

2.1 Preliminaries

We begin by stating the main theorem of infinite Galois theory. For details we
refer the reader to [Neu92, Chapter IV.1]. We recall that a (finite or infinite)
algebraic field extension L/F is Galois if L/F is normal and separable and
that for each sub-extension E/F of L/F the extension L/E is Galois.

For the entire chapter we choose a field F and an arbitrary (finite or
infinite) Galois extension L of F with Galois group G := Gal(L/F ).

We equip G with the following topology: for each σ ∈ Gal(L/E) we take the
cosets σG as a neighborhood basis of σ, where E/F runs through all finite
sub-extensions of L/F . The so defined topology is called Krull topology.

19



20 CHAPTER 2. GENERAL KUMMER THEORY

2.1.1 Theorem (Main Theorem of Infinite Galois Theory). Let G be
the set of closed (under the Krull topology) subgroups of G and L the set of
intermediate fields of L/F . The maps

FixL
‹

F : G −→ L, H 7→ FixL
‹

F (H) := {l ∈ L | σ(l) = l for all σ ∈ H}

and

GalL
‹

F : L −→ G, E 7→ GalL
‹

F (E) := Gal(L/E)

:= {σ ∈ G | σ(e) = e for all e ∈ E}

are mutually inverse. Under this bijection, the open subgroups of G corre-
spond exactly to the finite sub-extensions E/F of L/F .

Consider a subset A of Lm for some m ∈ Z≥1 on which we define a coordi-
natewise operation of G, i. e.

σ(a) = σ
(
(a1, . . . , am)

)
:=

(
σ(a1), . . . , σ(am)

)
.

A shall possess a group structure ∗ which is compatible with this operation,
i. e.

σ(a ∗ b) = σ(a) ∗ σ(b)

for all σ ∈ G and all a, b ∈ A. Then A is called a G-module.

For a subgroup H of G we define a subgroup AH of A by

AH := {α ∈ A | σ(α) = α for all σ ∈ H} (2.1.a)

and for a subset B of A a subgroup GB of G by

GB := {σ ∈ G | σ(β) = β for all β ∈ B}. (2.1.b)

In this way we get mappings A( )
(
H 7→ AH

)
and G( )

(
B 7→ GB

)
between G

and the set A of subsets of A.

We now use these four maps to define the maps

F ( ) : A −→ L, B 7→ F (B) := FixL
‹

F (GB) (2.1.c)

and
A( ) : L −→ A, E 7→ AE := AGalL

‹

F (E). (2.1.d)

One easily verifies
AE = A ∩ Em. (2.1.e)
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Let B be a subset of A and F
(
{B}

)
be the subfield of L which is obtained

by adjoining all the coordinates of the elements of B to F . Since

GalL
‹

F

(
F

(
{B}

))
=

{
σ ∈ G | σ(y) = y for all y ∈ F

(
{B}

)}

=
{
σ ∈ G | σ(β) = β for all β ∈ B

)}

= GB

we get

F ({B}) = FixL
‹

F

(
GalL

‹

F

(
F

(
{B}

)))
= FixL

‹

F

(
GB

)
= F (B) (2.1.f)

and
GB = GalL

‹

F

(
F

(
{B}

))
= GalL

‹

F

(
F (B)

)
. (2.1.g)

Since GalL
‹

F

(
F (B)

)
= Gal(L/F (B)) is closed (under the Krull topology) in

Gal(L/F ), this last equation shows

2.1.2 Proposition. For each subset B of A the group GB is closed in
Gal(L/F ).

We know that F (B)/F is Galois iff Gal(L/F (B)) = GB is normal in G. We
obviously have

2.1.3 Proposition. If B ⊆ A is fixed under G, then GB is normal in G.

Let E1 ⊆ E2 be intermediate fields of L/F and R be a complete irreducible
set of representatives of GalL

‹

F (E2) in GalL
‹

F (E1). We now define the map

NE2/E1 : AE2 −→ AE1, a 7→
∏

τ∈R

τ(a)

if the group structure ∗ in A is written multiplicatively and

TrE2/E1
: AE2 −→ AE1 , a 7→

∑

τ∈R

τ(a)

if the group structure in A is written additively. (For the rest of this section
we stay with the first case, but everything works the same way for the second.)
Since for each σ ∈ GalL

‹

F (E1) also R′ := {στ | τ ∈ R} is a complete
irreducible set of representatives of GalL

‹

F (E2) in GalL
‹

F (E1), we have

σ(NE2/E1(a)) = NE2/E1(a)

for each σ ∈ GalL
‹

F (E1), hence NE2/E1
(a) ∈ AE1 and NE2/E1

is well defined.
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2.1.4 Theorem. We keep the above notations.

(i) NE2/E1 is well defined.

(ii) NE2/E1
is a homomorphism.

(iii) For each a ∈ AE2 and each σ ∈ G we have

Nσ(E2)/σ(E1)(σ(a)) = σ
(
NE2/E1

(a)
)
.

(i), (ii) and (iii) analogously hold for TrE2/E1
.

Proof. (i) was shown above, (ii) is obvious and (iii) follows from the definition
and the fact that for each σ ∈ GalL

‹

F (E1) the set R′′ := {στσ−1 | τ ∈

R} is a complete irreducible set of representatives of σGalL
‹

F (E2)σ
−1 =

GalL
‹

F (σ(E2)) in σGalL
‹

F (E1)σ
−1 = GalL

‹

F (σ(E1)).

For the rest of this chapter we now suppose that we have a surjective
G-homomorphism

℘ : A −→ A

with finite cyclic kernel µ℘ ⊆ AF . Here G-homomorphism means

σ(℘(a)) = ℘(σ(a)) for all σ ∈ G and a ∈ A. (2.1.h)

Moreover we make the following

2.1.5 Axiomatic Assumption. Let E/F be a finite cyclic extension of F
with E ⊆ L and σ a generator of Gal(E/F ). Let a ∈ AE. Then

NE/F (a) = 1 ⇐⇒ ∃b ∈ AE : a = σ(b) · b−1.

(In the additively written case this becomes

TrE/F (a) = 0 ⇐⇒ ∃b ∈ AE : a = σ(b)− b.)

2.1.6 Remark. We note that from 2.1.4(iii) follows that “⇐=” in (2.1.5)
always holds.
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Let now U be a subset of AF and ∆U the subgroup of AF which is generated
by the set

{ui ∗ ℘(AF ) | u ∈ U, i ∈ Z},

i. e. the set {u | u ∈ U} generates the group ∆U/℘(AF ) (in particular
℘(AF ) ⊆ ∆U). Moreover, let Y ⊆ A with ℘(Y ) = U and ΓY be the subgroup
of A which is generated by the set

{yi ∗ AF | y ∈ Y, i ∈ Z}.

(Note that for elements u and y in AF with ℘(y) = u we write ∆u := ∆{u}

and Γu := Γ{y}, respectively.) We now show

℘−1(∆U) = ΓY . (2.1.i)

Obviously ΓY ⊆ ℘−1(∆U ). Take a ∈ ℘−1(∆U). Then

℘(a) = uλ1
1 ∗ · · · ∗ u

λr

r ∗ ℘(α)

for some ui ∈ U , λi ∈ Z and α ∈ AF and

℘
(
yλ1

1 ∗ · · · ∗ y
λr

r ∗ α
)

= ℘(a)

for some yi ∈ Y . Therefore

a−1 ∗
(
yλ1

1 ∗ · · · ∗ y
λr

r ∗ α
)
∈ µ℘ ⊆ AF ,

i. e. a ∈ ΓY and (2.1.i) is shown.

2.1.7 Proposition. Let U ⊆ AF . Then

(i) F
(
{Y }

)
= F

(
Y

)
= F

(
ΓY

)
= F

(
℘−1(∆U)

)
= F

(
℘−1(U)

)
.

(ii) F
(
℘−1(U)

)/
F is Galois.

Proof. (i) follows directly from (2.1.f), (2.1.i) and the definitions. (ii) follows
since ℘ is a G-homomorphism, U ⊆ AF is invariant under G and (2.1.3).

2.1.8 Definition. Let L/F be a field extension. Then L/F is called

(i) cyclic, if L/F is Galois and its Galois group G is cyclic,

(ii) Abelian, if L/F is Galois and its Galois group G is Abelian and
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(iii) of exponent m, if L/F is Galois and the exponent of its Galois group
G divides m, i. e. if σm = 1 for all σ ∈ G. (Note that m is not unique,
i. e. if L/F is of exponent m, then also of exponent l for each m | l.)

2.1.9 Lemma. Let u ∈ AF and y ∈ A with ℘(y) = u, i. e. F (y) = F (℘−1(u)) =
F (℘−1(∆u)). Then we have an injective group homomorphism

ψu : Gal(F (y)/F ) ↪→ µ℘, σ 7→ σ(y) ∗ y−1.

In particular, Gal(F (y)/F ) is cyclic of exponent |µ℘|.

Proof. First we note that the definition of ψu does not depend on the choice
of y, i. e. if y1 ∈ A is another element satisfying ℘(y1) = u, then

℘(y) = ℘(y1) =⇒ y ∗ y−1
1 ∈ µ℘ ⊆ AF

=⇒ σ(y ∗ y−1
1 ) = y ∗ y−1

1

=⇒ σ(y) ∗ y−1 = σ(y1) ∗ y
−1
1 .

Moreover,

℘(y) = u ∈ AF =⇒ ℘(σ(y)) = σ(℘(y)) = σ(u) = u

=⇒ ℘(σ(y)) = ℘(y)

=⇒ σ(y) ∗ y−1 ∈ µ℘

for all σ ∈ Gal(F (y)/F ), hence we have shown that ψu is well defined.

ψu is injective since from σ(y) ∗ y−1 = τ(y) ∗ y−1 follows σ(y) = τ(y) and
therefore σ = τ .

2.1.10 Lemma. If E/F (with E ⊆ L) is cyclic of exponent |µ℘|, then E =
F (y) = F (℘−1(u)) with y ∈ AE and ℘(y) = u ∈ AF .

Proof. Let σ be a generator of Gal(E/F ) and ξσ an element of µ℘ with

|ξσ| = |σ| = [E : F ].

Then NE/F (ξσ) = ξ
[E:F ]
σ = 1 and 2.1.5 gives us an element y ∈ AE with

ξσ = σ(y)y−1. (2.1.j)

We claim
F (y) = E.
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y ∈ AE implies F (y) ⊆ E. (2.1.j) gives σi(y) = ξiσy. Therefore and since ξσ
has order [E : F ] we get

σi(y) = y iff i ≡ 0 mod [E : F ],

hence E ⊆ F (y). Now

σ(℘(y))

℘(y)
=
℘(σ(y))

℘(y)
=
℘(ξσy)

℘(y)
= ℘(ξσ) = 1,

i. e. σ(℘(y)) = ℘(y) and therefore

℘(y) =: u ∈ AF

and we are done.

2.1.11 Theorem.

(i) Let ∆ be a subgroup of AF with ℘(AF ) ⊆ ∆ ⊆ AF and E := F (℘−1(∆)) ⊆
L. Then E/F is Abelian of exponent |µ℘|.

(ii) Conversely, if E/F is Abelian of exponent |µ℘|, then E = F (℘−1(∆))
with ∆ = ℘(AE) ∩ AF . In particular we have ℘(AF ) ⊆ ∆ ⊆ AF .

Proof. (i): Since

E = F (℘−1(∆)) =
∐

y∈℘−1(∆)

F (y) =
∐

u∈∆

F (℘−1(u))

we get from 2.1.9 a monomorphism

Gal(E/F )
∼=
−→

∐

u∈∆

Gal
(
F (℘−1(u))/F

)

Q

u∈∆
ψu

−−−→ µ∆
℘ .

Therefore Gal(E/F ) is Abelian of exponent |µ℘|.

(ii): We first show F (℘−1(∆)) ⊆ E by showing ℘−1(∆) ⊆ AE. Let b ∈
℘−1(∆), i. e.

℘(b) ∈ ∆ = ℘(AE) ∩ AF =⇒ ∃a ∈ AE with ℘(b) = ℘(a) ∈ AF

=⇒ b = aξ, ξ ∈ µ℘ ⊆ AF

=⇒ b ∈ AE.
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We now want to show E ⊆ F (℘−1(∆)). Since E/F is Abelian of exponent

|µ℘|, we have an injection Gal(E/F )
ι
↪→

∏

i∈I µ℘. For each i we consider the
homomorphism

ιi : Gal(E/F )
ι
↪→

∏

i

µ℘
πi

� µ℘

(here πi is the i-th projection), define Hi := ker(ιi) and set Ei := FixL
‹

F (Hi).
Since

⋂

iHi = {id} we know

FixL
‹

F

( ⋂

i

Hi

)

= E.

Now, for each σ ∈ G

σ ∈ GalL
‹

F

(∐

i

Ei

)

⇐⇒ σ ∈ GalL
‹

F (Ei) for all i

and therefore

GalL
‹

F

(∐

i

Ei

)

=
⋂

i

GalL
‹

F

(
FixL

‹

F (Hi)
)

=
⋂

i

Hi.

This yields

∐

i

Ei = FixL
‹

F

(

GalL
‹

F

(∐

i

Ei

))

= FixL
‹

F

(⋂

i

Hi

)

= E.

Each of the extensions Ei/F is Galois and, since

Gal(Ei/F ) ∼= Gal(E/F )
/

Gal(E/Ei) = Gal(E/F )
/

Hi

even cyclic of exponent |µ℘|. From 2.1.10 we get

Ei = F (yi) = F (℘−1(ui))

for some yi ∈ AEi
with

℘(yi) =: ui ∈ ℘(AEi
) ∩ AF ⊆ ℘(AE) ∩ AF = ∆,

i. e. yi ∈ ℘
−1(∆). Therefore

E =
∐

i

Ei =
∐

i

F (yi) ⊆ F (℘−1(∆)).

The last statement ℘(AF ) ⊆ ∆ ⊆ AF of (ii) follows from the definition of ∆
and the fact that σ(℘(x)) = ℘(σ(x)) = ℘(x) for all x ∈ AF and σ ∈ G.
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2.2 Pairings between Groups

2.2.1 Lemma. Let H be a cyclic group of exponent n, i. e. H ∼= Z/qZ for
some q with q|n. Then

H ∼= Hom(H,Z/nZ).

Proof. Let a be a generator of H and f ∈ Hom(H,Z/nZ). Then

ord f(a)
∣
∣ ord(a) = q

and we are done since the number of elements b of Z/nZ with qb = 0 equals
q.

2.2.2 Lemma. Let U be a finite Abelian group of exponent n. Then

U ∼= Hom(U,Z/nZ).

Proof. Follows from

U ∼=

r⊕

i=1

Z/qiZ with qi|n,

Hom

( r⊕

i=1

Z/qiZ,Z/nZ
)

∼=

r∏

i=1

Hom
(
Z/qiZ,Z/nZ

)

and 2.2.1.

Let C,D be Abelian groups of exponent n. A pairing of C and D in the
additive group Z/nZ is a map

Ψ := 〈 , 〉 : C ×D −→ Z/nZ

which is homomorphic in both arguments. Each one of given homomorphisms
C −→ Hom(D,Z/nZ) and D −→ Hom(C,Z/nZ) defines a pairing. On the
other hand each pairing defines the homomorphisms

ιΨ,1 : C −→ Hom(D,Z/nZ), c 7→ 〈c, 〉 (2.2.a)

and

ιΨ,2 : D −→ Hom(C,Z/nZ), c 7→ 〈 , d〉. (2.2.b)
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A pairing is called non-degenerate, if ιΨ,1 and ιΨ,2 are injective. We denote
by C and D the set of subgroups of C and D, respectively, and define the
following maps

φΨ,1 : C −→ D, U 7−→ V :=
{
d ∈ D | 〈U, d〉 = {0}

}
(2.2.c)

and

φΨ,2 : D −→ C, V 7−→ U :=
{
c ∈ C | 〈c, V 〉 = {0}

}
. (2.2.d)

2.2.3 Remark. Let U be a subgroup of C. Then of course the homomor-
phism

ιΨ,1
∣
∣
U

: U −→ Hom(D,Z/nZ)

is also injective. Let h := ιΨ,1
∣
∣
U
(u) for some u ∈ U be in the image of ιΨ,1

∣
∣
U
.

From the definition of φΨ,1 it then follows

φΨ,1(U) ⊆ ker h.

�

2.2.4 Lemma. Let C,D be Abelian groups of exponent n and Ψ := 〈 , 〉 be
a non-degenerate pairing. Let U be a subgroup of C. Then

(i) U is infinite iff D/φΨ,1(U) is infinite.

(ii) If U is finite, then |U | =
∣
∣D/φΨ,1(U)

∣
∣.

(iii) If U is finite, then

U ∼= Hom(D/φΨ,1(U),Z/nZ) ∼= D/φΨ,1(U)

and
D/φΨ,1(U) ∼= Hom(U,Z/nZ) ∼= U.

(The same assertions of course hold for subgroups V of D and C/φΨ,2(V ).)

Proof. For each subgroup U of C the pairing Ψ induces a pairing

ΨU : U ×D/φΨ,1(U) −→ Z/nZ.

That ΨU is well defined follows from the above definitions and 2.2.3.
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ΨU is non-degenerate: ιΨU ,1 : U −→ Hom(D/φΨ,1(U),Z/nZ) is injective
because ιΨ,1 is, and ιΨU ,2 : D/φΨ,1(U) −→ Hom(U,Z/nZ) is injective since
the homomorphism

D −→ Hom(U,Z/nZ), d 7→ 〈 , d〉
∣
∣
U

has kernel φΨ,1(U). This shows (i). If U is finite, then we also get that

|U | divides
∣
∣Hom(D/φΨ,1(U),Z/nZ)

∣
∣ =

2.2.2

∣
∣D/φΨ,1(U)

∣
∣

and
∣
∣D/φΨ,1(U)

∣
∣ divides

∣
∣Hom(U,Z/nZ)

∣
∣ =

2.2.2

∣
∣U

∣
∣,

i. e.
|U | =

∣
∣D/φΨ,1(U)

∣
∣.

This means that for finite U the homomorphisms ιΨU ,1 and ιΨU ,2 are bijections
and (ii) and (iii) are shown. (The second equality in each equation of (iii)
follows from 2.2.2.)

2.2.5 Lemma. Suppose C,D are Abelian groups of exponent n and Ψ := 〈 , 〉
is a non-degenerate pairing of C and D. For an element d ∈ D we denote by
〈d〉 the subgroup of D generated by d. Assume that for each subgroup V of D
and each d ∈ D with φΨ,2(V ) = φΨ,2(V + 〈d〉) there exists a finite subgroup
V0 ⊆ V with φΨ,2(V0) = φΨ,2(V0 + 〈d〉). Then φΨ,1 ◦ φΨ,2 is the identity.

Proof. From the definitions of the maps φΨ,1 and φΨ,2 we easily see
φΨ,2 ◦ φΨ,1 ◦ φΨ,2 = φΨ,2. If we can show that φΨ,2 is injective, then the
result follows.

Let V and V ′ be subgroups of D with φΨ,2(V ) = φΨ,2(V
′). Then also

φΨ,2(V + V ′) = φΨ,2(V ). We now want to show that this last equation
implies

V + V ′ ⊆ V. (2.2.e)

In the same way also V + V ′ ⊆ V ′ holds, i. e. V = V ′, and the injectivity of
φΨ,2 follows. To verify (2.2.e) we take d ∈ D with φΨ,2(V ) = φΨ,2(V + 〈d〉)
and show d ∈ V . Our assumption gives us a finite subgroup V0 of D with
φΨ,2(V0) = φΨ,2(V0 + 〈d〉). From 2.2.4(ii) applied to subgroups of D we get

|V0| =
∣
∣C/φΨ,2(V0)

∣
∣ =

∣
∣C/φΨ,2(V0 + 〈d〉)

∣
∣ =

∣
∣V0 + 〈d〉

∣
∣

(note that from 2.2.4(i) we know that
∣
∣C/φΨ,2(V0 + 〈d〉)

∣
∣ is finite iff

∣
∣V0 + 〈d〉

∣
∣

is finite), i. e. d ∈ V0 ⊆ V .
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2.3 The Kummer Pairing

Now we are ready to prove the main theorem of this chapter. We keep the
notations and definitions of Section 2.1. In particular, we have a G-module
A ⊆ Lm and a surjective G-homomorphism ℘ : A → A with finite cyclic
kernel µ℘.

2.3.1 Theorem (Kummer Pairing). Let D the be the set of subgroups ∆
of A with ℘(AF ) ⊆ ∆ ⊆ AF and E be the set of Abelian extensions E of F
of exponent |µ℘| (with E ⊆ L).

(a) The maps
Θ : D −→ E, ∆ 7−→ E := F (℘−1(∆))

and
Ξ : E −→ D, E 7−→ ∆E := ℘(AE) ∩ AF

are mutually inverse and are preserving inclusions.

Take an arbitrary ∆ ∈ D and set E := F (℘−1(∆)) = Θ(∆).

(b) (i) There is a non-degenerate pairing

Ψ∆,E : Gal(E/F )×∆/℘(AF ) −→ µ℘

(σ, δ ∗ ℘(AF )) 7−→ σ(y) ∗ y−1,

where y ∈ ℘−1(δ).

(ii) Gal(E/F ) is finite iff ∆/℘(AF ) is finite.

(iii) If Gal(E/F ) is finite this pairing induces isomorphisms

Gal(E/F ) ∼= Hom(∆/℘(AF ), µ℘) ∼= ∆/℘(AF )

and
∆/℘(AF ) ∼= Hom(Gal(E/F ), µ℘) ∼= Gal(E/F ).

In particular
[E : F ] =

∣
∣∆/℘(AF )

∣
∣.

Proof. Note that for each ∆′ ∈ D and each subgroup Γ of ∆′ := ∆′/℘(AF )
there is a unique ∆ ∈ D with ∆ = Γ.



2.3. THE KUMMER PAIRING 31

We first show (b).

(i): We choose ∆ ∈ D and set E := F (℘−1(∆)).

Ψ∆,E is well defined: Like in the proof of 2.1.9 we see that the definition of
Ψ∆,E does not depend on the choice of y, i. e. if y1 ∈ A is another element
satisfying ℘(y1) = δ, then

σ(y) ∗ y−1 = σ(y1) ∗ y
−1
1

since µ℘ ∈ AF . Take δ ∈ ∆ and y ∈ ℘−1(δ). Then

℘(y) = δ ∈ AF =⇒ ℘(σ(y)) = σ(℘(y)) = σ(δ) = δ

=⇒ ℘(σ(y)) = ℘(y)

=⇒ σ(y) ∗ y−1 ∈ µ℘,

i. e. the image of Ψ∆,E is contained in µ℘. Suppose now δ ∈ ℘(AF ). Then for
all σ ∈ Gal(E/F )

σ(y) ∗ y−1 = 1 =⇒ σ(y) = y

=⇒ y ∈ AF

=⇒ ℘(y) = δ ∈ ℘(AF ),

i. e. Ψ∆,E is well defined in the second argument. That it is homomorphic in
both arguments follows from the definition of ℘. Hence we have shown that
Ψ∆,E is a well defined pairing.

Ψ∆,E is non degenerate: Suppose for some σ ∈ Gal(E/F ) we have ιΨ∆,E ,1(σ) =
1, i. e. σ(y) ∗ y−1 = 1, hence σ(y) = y for all y ∈ ℘−1(∆). Then σ = idE
and ιΨ∆,E ,1 is injective. For the second argument, suppose ιΨ∆,E ,2(δ) = 1 for

some δ ∈ ∆, i. e. σ(y) = y for some y ∈ ℘−1(δ) and all σ ∈ Gal(E/F ). Then
y ∈ AF and δ ∈ ℘(AF ), hence ιΨ∆,E ,2 is injective.

(ii) and (iii) follow from (i) and 2.2.4, since

φΨ∆,E ,1

(
Gal(E/F )

)
=

{
δ ∈ ∆

∣
∣ Ψ∆,E(Gal(E/F ), δ) = {1}

}

=
{
δ ∈ ∆

∣
∣ σ(y) = y ∀ σ ∈ Gal(E/F ), y ∈ ℘−1(δ)

}

= ℘(AGal(E/F )) ∩∆

= ℘(AF ) ∩∆

= ℘(AF ) = 0,

i. e.
∆
/

φΨ∆,E ,1

(
Gal(E/F )

) = ∆.
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We now proceed to prove (a).

From 2.1.11 we know that Θ and Ξ are well defined. It remains to show that
they are mutually inverse, i. e.

(Ξ ◦Θ)(∆) = ∆F (℘−1(∆)) = ∆ (2.3.a)

and
(Θ ◦ Ξ)(E) = F (℘−1(∆E)) = E. (2.3.b)

Let K := F (℘−1(AF )). The associated pairing Ψ := ΨAF ,K then induces the
homomorphisms

φΨ,1

(

H 7−→ ∆ : =
{
δ ∈ AF

∣
∣ Ψ(H, δ) = {1}

}

=
{
δ ∈ AF

∣
∣ σ(y) = y ∀ σ ∈ H, y ∈ ℘−1(δ)

}

= ℘(AH) ∩ AF
)

and

φΨ,2

(

∆ 7−→ H : =
{
σ ∈ Gal(K/F )

∣
∣ Ψ(σ,∆) = {1}

}

=
{
σ ∈ Gal(K/F )

∣
∣ σ(y) = y ∀y ∈ ℘−1(∆)

}

= G℘−1(∆)

)

between subgroups of Gal(K/F ) and subgroups of AF .

Now we show that the assumptions of 2.2.5 are fulfilled in our situation. Let
∆ be a subgroup of AF and a ∈ AF with φΨ,2(∆) = φΨ,2(∆ + ∆a), hence

G℘−1(∆) = φΨ,2(∆) = φΨ,2(∆ + ∆a) = G℘−1(∆+∆a)

and

F
(
℘−1(∆)

)
= FixL

‹

F

(
G℘−1(∆)

)
= FixL

‹

F

(
G℘−1(∆+∆a)

)

= F
(
℘−1(∆ + ∆a)

)

= F
(
℘−1(∆) + ℘−1(∆a)

)

= F
(
℘−1(∆), ℘−1(∆a)

)

= F
(
℘−1(∆), y

)

for some y ∈ ℘−1(a). Then y ∈ F
(
℘−1(∆)

)
. Therefore there exist y1, . . . , yr ∈

℘−1(∆) with y ∈ F (y1, . . . , yr) and for B := {℘(y1), . . . , ℘(yr)} we have
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∆B ⊆ ∆, ∆B is finite and y ∈ F
(
℘−1(∆B)

)
. Hence

FixL
‹

F

(
G℘−1(∆B)

)
= F

(
℘−1(∆B)

)
= F

(
℘−1(∆B), y

)

= F
(
℘−1(∆B), ℘−1(∆a)

)

= FixL
‹

F

(
G℘−1(∆B+∆a)

)

and therefore

φΨ,2(∆B) = G℘−1(∆B) = G℘−1(∆B+∆a) = φΨ,2(∆B + ∆a).

Hence we can use 2.2.5 and see that φΨ,1 ◦ φΨ,2 is the identity.

Now for each ∆ ∈ D we have

∆ = φΨ,1 ◦ φΨ,2(∆) = φΨ,1(G℘−1(∆))

= ℘
(
AG℘−1(∆)

)
∩ AF

= ℘
(
AGal

`

L/F (℘−1(∆))
´)
∩ AF

= ℘
(
AF (℘−1(∆))

)
∩ AF

= ∆F (℘−1(∆))

hence
∆ = ∆F (℘−1(∆)),

which shows (2.3.a).

For each ∆ ∈ D its image

φΨ,2(∆) = G℘−1(∆)

is closed (under the Krull topology) in Gal(K/F ) (see 2.1.2) and therefore
also

φΨ,1 ◦GalL
‹

F ◦ FixL
‹

F ◦ φΨ,2 = id,

i. e. φΨ,1 ◦GalL
‹

F is surjective and FixL
‹

F ◦ φΨ,2 is injective. From 2.1.11(ii)
follows that FixL

‹

F ◦φΨ,2 is surjective, hence φΨ,1 ◦GalL
‹

F is an isomorphism
and so

FixL
‹

F ◦ φΨ,2 ◦ φΨ,1 ◦GalL
‹

F = id .

Now for each E ∈ E

FixL
‹

F ◦ φΨ,2 ◦ φΨ,1 ◦GalL
‹

F (E) = FixL
‹

F ◦ φΨ,2 ◦ φΨ,1(Gal(L/E))

= FixL
‹

F ◦ φΨ,2(∆E)

= FixL
‹

F (G℘−1(∆E))

= F (℘−1(∆E))

which shows (2.3.b) and finishes the proof of the theorem.



34 CHAPTER 2. GENERAL KUMMER THEORY

The following important result is a direct consequence of 2.1.9, 2.1.10 and
2.3.1(b)(iii).

2.3.2 Corollary.

(i) Set n := |µ℘| and let u ∈ AF and y ∈ A with ℘(y) = u and ud 6∈ ℘(AF )
for all d | n, d < n, i. e. ∆u is cyclic of degree n. If E := F (y) =
F (℘−1(u)) = F (℘−1(∆u)), then E/F is cyclic of order n. In particular,
the map

ψu : Gal(F (y)/F ) ↪→ µ℘, σ 7→ σ(y) ∗ y−1

is an isomorphism.

(ii) Conversely, if E/F is cyclic of degree n = |µ℘|, then E = F (℘−1(∆u)) =
F (℘−1(u)) = F (y) with ℘(y) = u ∈ AF and ud 6∈ ℘(AF ) for all d | n,
d < n.



Chapter 3

Abelian Extensions

We now apply the results of the last chapter to some important cases of
Abelian and especially cyclic extensions.

For the whole chapter let F be a field of characteristic p and F̄ the
separable closure of F in some algebraic closure of F . Then F̄ is the
maximal Galois extension of F . We set G := Gal

(
F̄ /F

)
.

Section 3.1 characterizes all Abelian extensions of F of exponent n, assuming
that F contains a primitive n-th root of unity and, if p 6= 0, that n is coprime
to p. In Section 3.2 we describe all Abelian extensions of exponent pr of F
for the case p 6= 0.

3.1 Kummer Extensions

We begin this section by stating an important field theoretic result (see for
instance [Jan73, p. 213]).

3.1.1 Proposition. Let E/F be a finite cyclic Galois extension of order n.
Then there exists a normal basis for E/F , i. e. an element c of E such that
{σ(c) | σ ∈ Gal(E/F )} is a basis of E/F . c is called a normal basis
element for E/F . In particular, if E/F is cyclic and σ a generator of
Gal(E/F ), then c, . . . , σn−1c is a basis of E over F .

Suppose F contains the set µn of all n−th roots of unity, where the charac-
teristic of F is zero or coprime to n. Then the map (where A := F̄ ∗)

℘ : A −→ A, a 7−→ an

35
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is a surjective G-homomorphism with cyclic kernel µ℘ = µn ⊆ AF = F ∗ of
order n.

Before we can apply the results of general Kummer theory to the G-module
A and the G-homomorphism ℘ we first need to show that 2.1.5 holds in this
case.

3.1.2 Theorem (Hilbert 90). Let E/F be a finite cyclic extension with
E ⊆ F̄ and σ a generator of Gal(E/F ). Let a ∈ AE = E∗. Then

NE/F (a) = 1 ⇐⇒ ∃b ∈ AE = E∗ : a = σ(b) · b−1.

Proof. Because of 2.1.6 we only need to show “=⇒”. Let γ ∈ E be a normal
basis element for E/F and set

b := γ + aσ(γ) +
(
aσ(a)

)
σ2(γ) + · · ·+

(
aσ(a) · · ·σn−2(a)

)
σn−1(γ) 6= 0.

Applying σ and multiplying with a gives

aσ(b) = aσ(γ) +
(
aσ(a)

)
σ2(γ) +

(
aσ(a)σ2(a)

)
σ3(γ) + · · ·+

(
aσ(a) · · ·σn−1(a)

)

︸ ︷︷ ︸

=1

σn(γ)
︸ ︷︷ ︸

=γ

= b.

Now we can use 2.3.1 and see that there is a one-one correspondence between
the so called Kummer extensions of F , i. e. the Abelian extensions E ⊆ F̄ ∗

of F of exponent n = |µ℘|, and the subgroups ∆ of F̄ ∗ with ℘(F ∗) ⊆ ∆ ⊆
F ∗. These extensions are of the form E = F (℘−1(∆)), i. e. are obtained by
adjoining all n-th roots of elements of ∆ to F . We finish this section with
two statements about the cyclic case.

3.1.3 Proposition. Let F be a field which contains the set µn of all n−th
roots of unity, where the characteristic of F is zero or coprime to n. Then
the following statements are equivalent:

(i) E/F is a cyclic Kummer extension of degree n.

(ii) E = F (y), where yn = u ∈ F ∗ and ul 6= xn for all x ∈ F , l | n and
l < n.
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(iii) E = F (y) where yn = u ∈ F ∗ and u 6= wd for all w ∈ F , d | n and
d > 1.

Proof. 2.3.2.

Each element y ∈ E satisfying one of the equivalent conditions 3.1.3(ii) or
(iii) is called a Kummer generator of E/F .

The following proposition helps us to determine the ramification behaviour
of places in Kummer extensions of function fields.

3.1.4 Proposition. Let F/k be a function field and E/F be a cyclic Kummer
extension of degree n with generator y ∈ E and yn =: u ∈ F ∗. If P is a place
of F and P ′ an extension of P in E, then

e(P ′|P ) =
n

rP,E
,

where
rP,E := gcd

(
n, vP (u)

)
> 0.

Proof. [Has34].

3.2 Artin-Schreier-Witt Extensions

We now study Abelian extensions of degree pn for a prime p, where p is the
characteristic of the ground field.

Artin-Schreier Extensions

We begin with the special case of cyclic p extensions. These extensions have
been completely investigated by Artin and Schreier in [AS27]. We first state
their characterization here without providing proofs, since we deal with the
more general situation in the next subsection.

Let ℘ : F̄ −→ F̄ be defined by ℘(x) := xp− x. Then the following assertions
for a field extension E/F with E ⊆ F̄ are equivalent:

(1) E/F is cyclic of degree p.



38 CHAPTER 3. ABELIAN EXTENSIONS

(2) E = F (y), ℘(y) = yp − y = u ∈ F and u 6= αp − α for all α ∈ F .

An extension, for which (1) or (2) holds, is called an Artin-Schreier exten-
sion. The elements of Gal(E/F ) are given by σ(y) = y + ν, ν ∈ Fp. Each
y′ ∈ E with E = F (y′) and ℘(y′) = y′p − y′ ∈ F is called an Artin-
Schreier generator of E/F . An element y′ ∈ E is an Artin-Schreier
generator iff there exist µ ∈ Fp ⊂ F and ζ ∈ F such that y′ = µy + ζ
and y′p − y′ = u′ = µu + (ζp − ζ), i. e. iff y′ ∈ ℘−1(u′) with u′ ∈ F and
u′ − µu ∈ ℘(F ) for some µ ∈ Fp. The minimal polynomial of y′ over F is
T p − T − u′ ∈ F [T ].

3.2.1 Proposition. Let F/k be a function field of characteristic p > 0, k
perfect and P ∈ PF a place of F .

(i) For each u ∈ F we can define a unique

λP (u) :=







λ if there exists an element ζ := ζ(P, u) ∈ F with

vP
(
u+ (ζp − ζ)

)
= −λ < 0, λ 6≡ 0 mod p

0 if there exists an element ζ := ζ(P, u) ∈ F with

vP
(
u+ (ζp − ζ)

)
≥ 0.

(Note that if there are ζ1 and ζ2 in F with λ1 := vP
(
u+ (ζp1 − ζ1)

)
and

λ2 := vP
(
u+ (ζp2 − ζ2)

)
are negative and 6≡ 0 mod p, then λ1 = λ2.)

(ii) If E/F is an Artin-Schreier extension and y ∈ E an Artin-Schreier
generator of E/F with ℘(y) = u ∈ F , then

· P is unramified in E iff λP (u) = 0 and

· P is totally ramified in E iff λP (u) > 0.

Moreover, from (i) follows that, if y′ is another Artin-Schreier generator
of E/F with ℘(y′) = u′ ∈ F , then

λP (u) = λP (u′).

Proof. [Sti93, III.7.7 and III.7.8].

For later applications it will be important to actually compute λP (u) from
3.2.1(i). We describe the procedure for doing this in the following algorithm.
We keep the notations of Proposition 3.2.1.
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3.2.2 Algorithm. Reduction

Input: P ∈ PF , u ∈ F , charF = p > 0.

Output: ζ := ζ(P, u) ∈ F and λ = λP (u) ∈ Z (see 3.2.1(i)) with
either
vP (u+ (ζp − ζ)) ≥ 0 (in this case λ := 0)
or
vP (u+ (ζp − ζ)) = −λ < 0, λ 6≡ 0 mod p.

1. ζ ← 0, λ← vP (u), x← u

2. while λ < 0 and λ ≡ 0 mod p do

3. l ← λ/p

4. Choose t ∈ F with vP (t) = l.

5. Choose α ∈ O∗
P with

x

tp
+ P =

(
α+ P

)p
= αp + P (3.2.a)

(In the comments below we show how to find α.)

6. ζ ← ζ − αt

7. x← u+ (ζp − ζ)

8. λ← vP (x)

9. end while

10. if λ < 0 then

11. λ := −λ

12. else

13. λ := 0

14. end if

15. return ζ, λ

We finish this subsection by showing the correctness of this algorithm: First
we note that x = u+ (ζp − ζ) and tp are non zero. Since

vP (tp) = pvP (t) = pl = λ = vP (x),
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we have vP
(
x
tp

)
= 0, hence 0 6= x

tp
+ P ∈ OP/P . Then there exists an

α ∈ OP satisfying (3.2.a), since OP/P is perfect. Moreover, α ∈ O∗
P since

vP (αp) = vP
(
x
tp

)
= 0.

Now (3.2.a) implies
(
x
tp
− αp

)
∈ P , i. e. vP

(
x
tp
− αp

)
> 0. This implies

vP
(
x− (αt)p

)
> vP (tp) = λ. (3.2.b)

It now remains to show

vP
(
u+

(
(ζ − αt)p − (ζ − αt)

))
> vP (u+ (ζp − ζ)) = vP (x) = λ, (3.2.c)

since we then know that λ strictly increases in every step of the while loop,
so the algorithm terminates and does what we want. But since

vP
(
u+

(
(ζ − αt)p − (ζ − αt)

))
= vP

(
u+ (ζp − ζ)− ((αt)p − αt)

)

= vP
(
x− ((αt)p − αt)

)
,

(3.2.c) follows from vP (αt) = vP (t) = l > lp = λ and (3.2.b) (note that
during the while loop λ and therefore l are negative).

Artin-Schreier-Witt Extensions

Let now n be a fixed natural number and A be the additive group in the ring
of Witt vectors Wn(F̄ ) of length n. A becomes an (additive) G-module by
coordinatewise operation, i. e. id(a) = a, σ(a+b) = σ(a)+σ(b) and σ(τ(a)) =
(στ)(a) (a, b ∈ A, σ, τ ∈ G). For each intermediate field F ⊆ E ⊆ F̄ we get
from (2.1.e)

AE = A ∩ Em = Wn(E).

3.2.3 Proposition. The homomorphism

℘ : Wn(F̄ ) −→Wn(F̄ ), (x1, . . . , xn) 7−→ (xp1, . . . , x
p
n)− (x1, . . . , xn)

has the following properties:

(i) ℘ is G-linear.

(ii) ℘ is surjective.

(iii) The kernel µ℘ of ℘ is finite and cyclic of order pn, more precisely we
have

µ℘ = Wn(Fp) ∼= Z/pnZ.
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Proof. (i) is clear.

(ii). Given (b1, . . . , bn) ∈ Wn(F̄ ), we need to show the existence of some
(a1, . . . , an) ∈ Wn(F̄ ) with

℘
(
(a1, . . . , an)

)
= (b1, . . . , bn). (3.2.d)

Since the polynomial T p − T − b1 ∈ F̄ [T ] is separable, there exists a1 ∈ F̄
with ap1 − a1 = b1.

Suppose we find d2, . . . , dn with

℘
(
(0, d2, . . . , dn)

)
= (b1, b2, . . . , bn)− ℘

(
(a1, 0, . . . , 0)

)

=: (0, b′2, . . . , b
′
n).

(3.2.e)

Then

℘
(
(a1, d2, . . . , dn)

)
= ℘

(
(0, d2, . . . , dn)

)
+ ℘

(
(a1, 0, . . . , 0)

)

= (b1, b2, . . . , bn)

and we are done. But

℘
(
(0, d2, . . . , dn)

)
= (0, b′2, . . . , b

′
n) in Wn(F̄ )

iff

℘
(
(d2, . . . , dn)

)
= (b′2, . . . , b

′
n) in Wn−1(F̄ ).

This shows that we can find the vector (a1, . . . , an) ∈ Wn(F̄ ) satisfying (3.2.d)
inductively.

(iii). The first equality follows from

µ℘ =
{
x ∈ Wn(F̄ )

∣
∣ ℘(x) = 0

}

=
{
x ∈ Wn(F̄ )

∣
∣ F(x)− x

}

=
{
x = (x1, . . . , xn) ∈ Wn(F̄ )

∣
∣ (xp1, . . . , x

p
n) = (x1, . . . , xn)

}

=
{
x = (x1, . . . , xn) ∈ Wn(F̄ )

∣
∣ xi ∈ Fp

}
.

The second is just 1.4.5(ii).

Now we want to apply the results of general Kummer theory to the G-module
A and the surjective G-homomorphism ℘. Again we first need to show that
2.1.5 holds in this case.
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3.2.4 Theorem. Let E/F be a finite cyclic extension with E ⊆ F̄ and σ a
generator of Gal(E/F ). Let a ∈ AE = Wn(E). Then

TrE/F (a) = 0 ⇐⇒ ∃b ∈ Wn(E) : a = σ(b)− b.

Proof. Like above, because of 2.1.6 we only need to show “=⇒”. Choose an
element c1 ∈ E with TrE/F (c1) = t 6= 0. For c := (c1, 0, . . . , 0) ∈ Wn(E) we
then have

TrE/F (c) = (t, ∗, . . . , ∗) ∈ (Wn(F ))∗

(see 1.4.5(i)). Now we set

b :=
1

TrE/F (c)

[

−aσ(c)−
(

a + σ(a)
)

σ2(c)− · · ·−

(

a+ σ(a) + · · ·+ σn−2(a)
)

σn−1(c)

]

.

Considering that

σ(b) :=
1

TrE/F (c)

[

−σ(a)σ2(c)−
(

σ(a) + σ2(a)
)

σ3(c)− · · ·−

(

σ(a) + σ2(a) + · · ·+ σn−1(a)
)

︸ ︷︷ ︸

=−a

σn(c)
︸ ︷︷ ︸

=c

]

we get

σ(b)− b =
ac+ aσ(c) + aσ2(c) + · · ·+ aσn−1(c)

TrE/F (c)
= a.

As in Section 3.1, we can apply 2.3.1 now and see that there is a one-one
correspondence between the so called Artin-Schreier-Witt extensions of
F , i. e. the Abelian extensions E ⊆ F̄ of F of exponent pn = |µ℘|, and the
subgroups ∆ of Wn(F̄ ) with ℘(Wn(F )) ⊆ ∆ ⊆ Wn(F ).

And again, as we are especially interested in the cyclic case, the rest of this
section is devoted to it. We begin with the following

3.2.5 Lemma. Let ∆ be an additive subgroup of AF = Wn(F ) with ℘(AF ) =
℘(Wn(F )) ⊆ ∆. Then the following assertions are equivalent:

(i) ∆
/
℘
(
Wn(F )

)
∼= Z/pnZ
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(ii) ∆ = ∆u for some u = (u1, . . . , un) ∈ Wn(F ) with u1 6= αp−α for all α ∈
F.

Proof. Of course, if ∆
/
℘
(
Wn(F )

)
∼= Z/pnZ, then ∆ = ∆u for some u =

(u1, . . . , un) ∈ Wn(F ) and piu 6∈ ℘
(
Wn(F )

)
for all 1 ≤ i < n. But, if

u1 = αp − α for some α ∈ F , then

pn−1(u1, . . . , un) =
(1.4.i)

(0, . . . , 0, up
n−1

1 ) ∈ ℘
(
Wn(F )

)

= ℘
(
(0, . . . , 0, αp

n−1

)
)
∈ ℘

(
Wn(F )

)

since

up
n−1

1 = (αp − α)p
n−1

=
(
αp

n−1)p
− αp

n−1

.

On the other hand, if u1 6= αp − α for all α ∈ F , then, since F is perfect,
also (u1)

pi

6= βp − β for all β ∈ F and all natural numbers i and therefore
pmu /∈ ℘

(
Wn(F )

)
for all 0 ≤ m < n.

3.2.6 Theorem. The following statements are equivalent:

(i) E/F is a cyclic Artin-Schreier-Witt extension of degree pn.

(ii) E = F (y) = F (℘−1(u)) = F (℘−1(∆u)), where ℘(y) = u ∈ Wn(F ),
piu 6∈ ℘

(
Wn(F )

)
for all 1 ≤ i < n, i. e. ∆ = ∆u

/
℘
(
Wn(F )

)
is cyclic of

order pn.

(iii) E = F (y) = F (℘−1(u)) = F (℘−1(∆u)), where u = (u1, . . . , un) ∈
Wn(F ) with ℘(y) = u and u1 6= αp − α for all α ∈ F .

Proof. 2.3.2 and 3.2.5.

Let now E/F be a cyclic Artin-Schreier-Witt extension of degree pn, i. e. we
have u ∈ Wn(F ), u1 6= αp − α for all α ∈ F , y = (y1, . . . , yn) ∈ ℘

−1(u) and
E = F (y1, . . . , yn). We set E0 := F , En := E and Ei := F (y1, . . . , yi) for
each 1 ≤ i ≤ n. Note that, since Ei/F is cyclic, F,E1, . . . , Ei−1 are the only
intermediate fields of Ei/F , and therefore

Ei = F (y1, . . . , yi) = F (yi).



44 CHAPTER 3. ABELIAN EXTENSIONS

3.2.7 Remark. From 1.4.2 we get the recursions

u1 = yp1 − y1,

u2 = yp2 − y2 − z1,

...

un = ypn − yn − zn−1,

(3.2.f)

where zi ∈ Ei are polynomial expressions with coefficients in the prime field
of F given by z0 = 0 and

zi = −
yp

2

i − y
p
i − u

p
i

p
−
yp

3

i−1 − y
p2

i−1 − u
p2

i−1

p2
− · · · −

yp
i+1

1 − yp
i

1 − u
pi

1

pi

= −
(yi + ui + zi−1)

p − ypi − u
p
i

p

−
(yi−1 + ui−1 + zi−2)

p2 − y p
2

i−1 − u
p2

i−1

p2
− · · ·

· · · −
(y1 + u1)

pi

− y p
i

1 − u
pi

1

pi
.

(3.2.g)

Obviously, each extension Ei/Ei−1 is an Artin-Schreier extension with gen-
erator yi. �

Choose a generator σ of Gal(E/F ). Since the map

ψu : Gal(E/F ) ↪→ µ℘, σ 7→ σ(y)− y

is an isomorphism (see 2.3.2(i)), we have σ(y) = y + α for some generator α
of µ℘ = Wn(Fp) ∼= Z/pnZ and therefore σl(y) = y + lα for each l ∈ N. In
other words, the elements of Gal(E/F ) are given by

σl(yi) = (y + lα)i, 1 ≤ i ≤ n, 1 ≤ l ≤ pn.

Note that
σ(y) = y + α = (y1 + c0, . . . , yn + cn−1)

with ci ∈ Ei, i. e.

σi(yj) = yj + cj−1 (1 ≤ j ≤ i ≤ n), (3.2.h)

where σi := σ|Ei
is a generator of the Galois group of Ei/F and, if j < i,

then σi
∣
∣
Ej

= σj. Now (3.2.f) and (3.2.h) give

σi−1((zi−1 + ui))− (zi−1 + ui) = cpi−1 − ci−1.
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From

σ pi

i+1(yi+1) = yi+1 + ci + σi+1(ci) + · · ·+ σ pi−1
i+1 (ci)

= yi+1 + ci + σi(ci) + · · ·+ σ pi−1
i (ci)

= yi+1 + TrEi/F (ci)

it follows that TrEi/F (ci) 6= 0, since otherwise σ pi

i+1 = 1, contradicting ordσi+1 =
pi+1.

Each y′ = (y′1, . . . , y
′
n) ∈ ℘

−1
(
Wn(F )

)
with E := En = F (y′1, . . . , y

′
n) is called

an Artin-Schreier-Witt generator of E/F . If y ′ is an Artin-Schreier-Witt
generator of E/F , then, for each 1 ≤ i ≤ n, (y′1, . . . , y

′
i) is an Artin-Schreier-

Witt generator of Ei/F .

3.2.8 Proposition. Let E/F be a cyclic Artin-Schreier-Witt extension of
degree pn, i. e. we have u ∈ Wn(F ), u1 6= αp − α ∀α ∈ F , y = (y1, . . . , yn) ∈
℘−1(u) and E = F (y) = F (y1, . . . , yn). Then, for y′ ∈ Wn(F̄ ), the following
assertions are equivalent:

(i) y′ is an Artin-Schreier-Witt generator of E/F .

(ii) y′ ∈ ℘−1(u′) for some u′ ∈ Wn(F ) and u′ − λu ∈ ℘
(
Wn(F )

)
for some

λ ∈
(
Z/pnZ

)∗
.

(iii) y′ = λy + ζ for some λ ∈
(
Z/pnZ

)∗
and ζ ∈ Wn(F ).

Proof. (i)⇔(ii):

F (y) = F (y′) ⇐⇒
2.1.7

F
(
℘−1(∆u)

)
= F

(
℘−1(∆u′)

)

⇐⇒
2.3.1

∆u = ∆u′

⇐⇒ ∆u = ∆u′

⇐⇒ ∃ λ ∈
(
Z/pnZ

)∗
with u′ − λu ∈ ℘

(
Wn(F )

)
.

(ii)⇒(iii): Let
u′ ≡ λu mod ℘

(
Wn(F )

)

for some λ ∈
(
Z/pnZ

)∗
, i. e. u′ = λu+℘(θ) for some θ ∈ Wn(F ). y′ ∈ ℘−1(u′)

implies y′ = λy + θ + θ′ with θ′ ∈ ker℘ ⊆ Wn(F ).

(iii)⇒(ii): If y′ = λy + ζ for some λ ∈
(
Z/pnZ

)∗
and ζ ∈ Wn(F ), then

℘(y′) = λu+ ℘(ζ) =: u′ ∈ Wn(F ) and u− λ−1u′ = ℘(ζ) ∈ ℘
(
Wn(F )

)
.
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Chapter 4

Computing the Generators

In this chapter we present the main results of this thesis. We give the proce-
dures and algorithms to compute a finite set Ω of OS-generators of OS(E),
where F/k is a function field with finite (in particular perfect) constant field
k, ∅ 6= S $ PF and E is a cyclic Kummer (4.2) or Artin-Schreier-Witt ex-
tension (4.3) of F . This is done by first splitting S in finitely many disjoint
subsets and then computing for each P in each of these sets a set ΩP of
S-integral generators of OP (E) over OP . Section 4.1 provides some auxiliary
tools for this, 4.1.2 and 4.1.3. Theorem 4.1.1 assures that the set, which
consists of the union of all ΩP , is the sought-after set Ω of OS-generators
of OS(E). Ω is finite since the sets ΩP are equal for all but finitely many
P ∈ S.

4.1 Preliminaries

The following fundamental theorem gives us one of the basic tools for our
purpose of computing the generators of all S-integral elements of E.

4.1.1 Theorem. Let E be an extension of a function field F/k and ∅ 6= S $
PF . Suppose there is a subset Ω of OS(E) which consists of OP -generators
of OP (E) for each P ∈ S, i. e.

OP (E) = OP [Ω] ∀ P ∈ S.

Then Ω is a set of generators of OS(E) over OS , i. e.

OS(E) = OS [Ω].

47
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Proof. For each P ∈ S we have the following picture:

(
OS(E)

)

P∩OS

(2)
OP (E)

OS(E)
(
OS [Ω]

)

P∩OS

(3)

(1)
OP [Ω]

OS [Ω] (OS)P∩OS
OP

OS

Here, (OS)P∩OS
is the localization of the ring OS at its prime ideal P ∩ OS

and
(
OS [Ω]

)

P∩OS

and
(
OS(E)

)

P∩OS

are the localizations of the OS-modules

OS [Ω] and OS(E), respectively. Since (OS)P∩OS
= OP (see 1.2.8(v)), these

are modules over OP (see Section 1.1). Equality (1) and (2) follow from
1.1.2(i) (for (2), take any set of generators Ω̃ ⊇ Ω of OS(E) over OS). (3)
follows from (1) and (2).

This means that
(
OS(E)

)

p
=

(
OS [Ω]

)

p

for all maximal ideals p of OS , and therefore

OS(E) = OS [Ω]

(see Proposition 1.1.3).

The next two results will help us to compute for a place P of a function field
F a local integral basis for some field extension of F .

4.1.2 Proposition. Suppose F ⊆ D ⊆ E is a tower of extensions of a
function field F , P ∈ PF a place and P1, . . . , Pr are all the places of D above
P . Let Ω ⊂ OP (D) with

OP (D) = OP [Ω]

and Ω1, . . . ,Ωr be subsets of OP (E) with

OPi
(E) = OPi

[Ωi]



4.1. PRELIMINARIES 49

for all 1 ≤ i ≤ r. Then

OP (E) = OP [Ω,Ω1, . . . ,Ωr].

Proof. With S := {P1, . . . , Pr} we get from 4.1.1

OS(E) = OS [Ω1, . . . ,Ωr].

Since OS =
⋂
OPi

= OP (D) = OP [Ω], the result follows.

4.1.3 Corollary. Let E0 ⊆ E1 ⊆ · · · ⊆ En be a tower of field extensions of a
function field E0 and P0 be a place of E0. Suppose for each 1 ≤ i ≤ n there
is a set ∆i ⊆ OP (Ei) such that

OPi−1
(Ei) = OPi−1

[∆i]

for each place Pi−1 of Ei−1 over P0. Then

OP0(En) = OP0[∆1, . . . ,∆n].

Proof. Repeated application of 4.1.2, with F = E0, D = E1, E = E2 in the
first step, F = E0, D = E2, E = E3 in the second and so on.

4.1.4 Remark. Let F be a function field over the rational function field
k(x) and ∅ 6= S $ PF . Define s := {p ∈ Pk(x) | ∃P ∈ S with P |p} and
S ′ := {P ∈ PF | P |p for some p ∈ s}. Then for each a ∈ F there exists a

representation a = num(a)
den(a)

satisfying

(1) num(a) = a1ω1 + · · ·+ amωm ∈ OS′ (here ω1, . . . , ωm is a basis of OS′

over Os),

(2) den(a) ∈ Os and

(3) gcd(den(a), a1, . . . , am) = 1 (note that Os is a unique factorization do-
main).

The following proposition provides us with a tool for finding for a given
element of a function field another element such that their product is integral
for a given set of places.
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4.1.5 Proposition. Let E/F be a function field extension, 0 6= β ∈ E and

χ`

β,E
‹

F
´(T ) =

m∑

i=0

αiT
i

the minimal polynomial of β over F . Let ∅ 6= S $ PF . If we define

δβ := lcm

{

den
(

αi

αj

) ∣
∣
∣ 0 ≤ i < j ≤ m, αi, αj 6= 0

}

,

then

βδβ ∈ OS(E). (4.1.a)

Suppose β is integral for some P ∈ S. Using Strong Approximation we choose
γ ∈ F with

vP (γ) = −vP (δβ) and

vQ(γ) ≥ 0 for all Q ∈ S \ {P}.

Then also

βδβγ ∈ OS(E). (4.1.b)

Proof. From the Newton polygon of χ`

β,E
‹

F
´ we know that there exist 0 ≤

r < s ≤ m such that 0 6= αr, αs and

vP ′(β) = e(P ′|P )
vP (αr)− vP (αs)

s− r

(see for instance [Cas86, Chapter 6.3]). Therefore

vP ′(βδβ) = e(P ′|P )

(
1

s− r
vP

(
αr
αs

)

+ vP (δβ)

)

=
e(P ′|P )

s− r

(

vP

(
αr
αs

)

+ (s− r)vP (δβ)

)

=
e(P ′|P )

s− r
vP

(
αr
αs

δs−rβ

)

≥ 0

for each P ∈ S and P ′ ∈ PE with P ′|P . This proves (4.1.a). The proof of
(4.1.b) is now trivial.
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4.2 Kummer Extensions

Let F/k be a function field which contains a primitive n-th root of unity,
n > 1 and n relative prime to the characteristic p of F . Suppose E/F is a
cyclic Kummer extension of F of degree n, i. e. E = F (y) where

yn = u ∈ F and u 6= wd for all w ∈ F , d | n and d > 1. (4.2.a)

Let ∅ 6= S $ PF . The task of this section is to find a set of OS(F )-generators
of OS(E). Let P ∈ S and P ′ ∈ PE with P ′|P . We recall from 3.1.4 that

eE(P ) := e(P ′|P ) =
n

rP,E
, (4.2.b)

where

rP,E := gcd
(
n, vP (u)

)
> 0.

Let us first consider the unramified places. We notice

P unramified in E/F ⇐⇒ e(P ′|P ) = 1 ∀P ′|P

⇐⇒ rP,E = n

⇐⇒ vP (u) ≡ 0 mod n.

We define

A : = {P ∈ S | P unramified in E/F}

= {P ∈ S | jPn =: vP (u) ≡ 0 mod n}

and

A0 := {P ∈ A | vP (u) = 0 and vP (δy) = 0}

(δy was defined in 4.1.5). Then

A \A0 = {P ∈ A | vP (u) 6= 0 or vP (δy) > 0}. (4.2.c)

4.2.1 Proposition (S-integral OP -generators of OP (E) for P ∈ A).

(i) yδy ∈ OS(E).

(ii) For all P ∈ A0 we have

OP (E) = OP [yδy].
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Using Strong Approximation we choose τ ∈ F with

vP (τ) = −(jP + vP (δy)) for all P ∈ A \ A0 and

vQ(τ) ≥ 0 for all Q ∈ S \ {A \ A0}.

Then

(iii) yδyτ ∈ OS(E)

(iv) OP (E) = OP [yδyτ ] for all P ∈ A \ A0.

Proof. (i) follows from 4.1.5.

We have
χ`

y, E
‹

F
´(T ) = T n − u ∈ OP [T ] for all P ∈ A0. (4.2.d)

From yn = u and vP (u) = 0 follows vP ′(y) = 0 and therefore

vP ′

(
χ′̀

y, E
‹

F
´(y)

)
= vP ′

(
n · yn−1

)
= (n− 1)vP ′(y) = 0 (4.2.e)

for all P ′ ∈ PE above P . (4.2.d) and (4.2.e) together with 1.2.13(i) give

OP (E) = OP [y] for all P ∈ A0.

Since vP (δy) = 0 for all P ∈ A0, this shows (ii).

Setting ỹ := yδyτ we get
ỹn = uδny τ

n =: ũ (4.2.f)

and
ũ 6= wd for all w ∈ F, d | n, d > 1. (4.2.g)

(Suppose not, i. e. ũ = wd. Then

u =
wd

δny τ
n

=

(
w

δ
n
d
y τ

n
d

)d

,

contradicting (4.2.a).) This means that ỹ is a Kummer generator of E/F
with minimal polynomial

χ`

ỹ, E
‹

F
´(T ) = T n − ũ.

4.1.5 and the definition of τ yields

vQ′

(
ỹ
)
≥ 0 (4.2.h)
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for all Q′|Q, Q ∈ S \ {A \ A0}. From

vP
(
ũ
)

= vP
(
(ỹ)n

)

= vP
(
yn

)
+ vP

(
δny

)
+ vP

(
τn

)

= vP (u) + nvP (δy) + nvP (τ)

= jPn + nvP (δy)− njP − nvP (δy)

= 0

(4.2.i)

follows
vP ′

(
ỹ
)

= 0 (4.2.j)

for all P ′ ∈ PE above P , P ∈ A \ A0. (4.2.h) and (4.2.j) now give (iii).

For (iv) we note that from (4.2.i)) we get χ`

ỹ, E
‹

F
´(T ) ∈ OP [T ] and that

(4.2.j) yields

vP ′

(
χ′(ỹ)

)
= vP ′

(
n · ỹn−1

)
= (n− 1)vP ′(ỹ) = 0

for all P ′ ∈ PE above P , P ∈ A \ A0, and therefore (by 1.2.13(i))

OP (E) = OP [ỹ]

for all P ∈ A \ A0.

Let us now consider the ramified places, i. e. the set

B := S \ A = {P ∈ S | vP (u) 6≡ 0 mod n}

We define

B1 : = {P ∈ B | eE(P ) = n}

= {P ∈ B | rP,E = gcd(n, vP (u)) = 1}
(4.2.k)

and
B2 := {P ∈ B | 1 < eE(P ) < n} = B \B1. (4.2.l)

If P ∈ B1, then P is totally ramified in E/F and there exist integers sP and
lP with lP > 0 such that

nsP + lPvP (u) = 1. (4.2.m)

Using Strong Approximation we choose γP ∈ F satisfying

vP (γP ) = sP − lPvP (δy) and

vQ(γP ) ≥ 0 for all Q ∈ S \ {P}.
(4.2.n)
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Since lP > 0 we get with 4.1.5

vQ′

(
γP (yδy)

lP
)
≥ 0 (4.2.o)

for all Q′|Q, Q ∈ S \ {P}. Moreover, if P ′ is the place of E above P , then

vP ′

(
γP (yδy)

lP
)

= e(P ′|P )vP (γP ) + lPvP ′(y) + e(P ′|P )lPvP (δy)

= nsP − nlPvP (δy) + lPvP (u) + nlPvP (δy)

= nsP + lPvP (u)

= 1.

(4.2.p)

(4.2.o), (4.2.p) and 1.2.13(ii) shows

4.2.2 Proposition (S-integral OP -generators of OP (E) for P ∈ B1).
If P ∈ B has ramification index n = [E : F ] (which is the case iff rP,E =
gcd(n, vP (u)) = 1) and γP is as in (4.2.n), then

(i) γP (yδy)
lP ∈ OS(E) and

(ii) OP (E) = OP [γP (yδy)
lP ]. �

Suppose now P ∈ B2, i. e. P is ramified in E with ramification index e :=
eE(P ), where 1 < e < n. Hence

r := rP,E =
n

e
= gcd(n, vP (u)). (4.2.q)

Consider the intermediate field Er := F (ye) of E/F and let Pr,1, . . . , Pr,s be
all the places of Er above P . Then Er/F is a Kummer extension of degree
r with Kummer generator ye and defining polynomial T r − u and E/Er is
a Kummer extension of degree e with Kummer generator y and defining
polynomial T e − ye. From (4.2.q) we get

rP,Er = gcd(r, vP (u)) = gcd(n, vP (u)) = r,

hence (see (4.2.b))

eEr(P ) =
r

rP,Er

= 1. (4.2.r)

This implies
e = eE(P ) = eEr(P ) · eE(Pr,i) = eE(Pr,i) (4.2.s)

for each 1 ≤ i ≤ s. This means that Er is the inertia field of P in E, i. e. P is
unramified in Er/F and each Pr,i is totally ramified in E/Er. We summarize
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the above in the following diagram:

E = F (y)

e

PE,1 · · · PE,s

eE(Pr,i) = e(PE,i|Pr,i) = e

yn = u

Er = F (ye)

r

Pr,1 · · · Pr,s
(
ye

)r
= u

F P

eEr(P ) = e(Pr,i|P ) = 1

(Here, PE,1, . . . , PE,s are all the places of E above P and PE,i|Pr,i.) The
unramified case (4.2.r) was dealt with in Proposition 4.2.1. Applied to our
situation this means that we take jP ∈ Z with

vP (u) = jP r,

use Strong Approximation to choose τP ∈ F with

vP (τP ) = −(jP + vP (δye)) and

vQ(τP ) ≥ 0 for all Q ∈ S \ {P}

and set
αP := yeδyeτP . (4.2.t)

4.2.1 then yields

αP ∈ OS(Er) and OP (Er) = OP [αP ]. (4.2.u)

On the other hand, the case (4.2.s) of total ramification was discussed in
Proposition 4.2.2: For all 1 ≤ i ≤ s we have

vPE,i
(yn) = vPE,i

(u) = evP (u)

=⇒ vPE,i
(yr) = vP (u)

=⇒ vPE,i
(y) =

vP (u)

r

=⇒ vPE,i
(ye) = e(PE,i|Pr,i)vPr,i

(ye) =
evP (u)

r

=⇒ vPr,i
(ye) =

vP (u)

r
.

Moreover we know
1 = rPr,i,E = gcd(e, vPr,i

(ye)).
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Hence there exist integers sP and lP with lP > 0 such that

esP + lP
vP (u)

r
= 1.

We use Strong Approximation to find γP ∈ F satisfying

vP (γP ) = sP − lPvP (δy) and

vQ(γP ) ≥ 0 for all Q ∈ S \ {P}

and define

βP := γP (yδy)
lP . (4.2.v)

Now, since lP > 0 we get with 4.1.5

vQ′

(
βP

)
≥ 0 (4.2.w)

for all Q′|Q, Q ∈ S \ {P}. Moreover, since P is unramified in Er/F we get
(similar to (4.2.p))

vPE,i

(
βP

)
= 1 (4.2.x)

for all 1 ≤ i ≤ s. From (4.2.w), (4.2.x) and 1.2.13(ii) then follows

βP ∈ OS(E) and OPr,i
(E) = OPr,i

[βP ] (4.2.y)

for all 1 ≤ i ≤ s. Putting together (4.2.u) and (4.2.y) and using 4.1.2 we get

4.2.3 Proposition (S-integral OP -generators of OP (E) for P ∈ B2).
Let P be in B2. With the notations just defined we get

(i) αP , βP ∈ OS(E) and

(ii) OP (E) = OP [αP , βP ]. �
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We are now able to give an algorithm which computes for each Kummer
extension E of a function field F and each ∅ 6= S $ PF a set of OS-generators
of OS(E):

4.2.4 Algorithm.

Input: A Kummer extension E = F (y)/F and ∅ 6= S $ PF .

Output: A finite set Ω of OS-generators of OS(E).

1. Compute the sets A \ A0, B1 and B2 (see (4.2.c), (4.2.k) and (4.2.l)).

2. Compute ΩA0 := {yδy}, where δy is as in 4.1.5.

3. Compute τ (see 4.2.1) and set ΩA\A0 := {yδyτ}.

4. For each P ∈ B1 compute sP and lP and γP satisfying (4.2.m) and
(4.2.n), respectively and set

ΩB1 := {γP (yδy)
lP | P ∈ B1}.

5. For each P ∈ B2 compute αP and βP as in (4.2.t) and (4.2.v), respec-
tively and set

ΩB2 := {αP , βP | P ∈ B2}

6. return Ω := ΩA0 ∪ ΩA\A0
∪ ΩB1 ∪ ΩB2 .

The correctness of this algorithm follows from S = A0 ∪ A \ A0 ∪ B1 ∪ B2

and Proposition 1.1.1. The set Ω is finite and contained in OS(E) since this
is true for each of the sets ΩA0 , ΩA\A0

, ΩB1 and ΩB2 (note that A \ A0, B1

and B2 are finite).
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4.3 Artin-Schreier-Witt Extensions

For this entire section we consider the following situation:

Let E/F be a cyclic Artin-Schreier-Witt extension of degree pn,
i. e. we have u ∈ Wn(F ), u1 6= αp−α for all α ∈ F , y = (y1, . . . , yn) ∈
℘−1(u) and E = F (y1, . . . , yn). We set E0 := F , En := E and
Ei := F (y1, . . . , yi) = F (yi) for each for each 1 ≤ i ≤ n.

Let ∅ 6= S $ PF . Now we have all the necessary tools to compute a set of
generators of OS(E) over OS . We will give a brief survey of this section. Let
P ∈ PF . We begin by defining a vector ΛP = (ΛP,1, . . . ,ΛP,n) ∈ Zn and a
vector ζP = ζ(P ) ∈ Wn(F ) which will give us important information about
the ramification behaviour of P in E. We use these vectors to split S into
finitely many disjoint subsets. Then we compute for each P in each of these
sets a set of S-integral generators of OP (E) over OP . As mentioned above,
Theorem 4.1.1 then guarantees that the set Ω, which consists of all these
generators and will turn out to be finite, has the desired properties.

We define the vector ΛP = (ΛP,1, . . . ,ΛP,n) ∈ Zn in the following way: Set
u[0] := u. Using algorithm 3.2.2 we choose an element ζ1 := ζ(P, u1) ∈ F
which determines λP (u1) (see 3.2.1(i)), that is,

either vP
(
u1 + (ζp1 − ζ1)

)
= −λP (u1)

or vP
(
u1 + (ζp1 − ζ1)

)
≥ 0.

We set ΛP,1 := λP (u1), (ζP )1 := ζ1 and

u[1] := u[0] + ℘
(
(ζ1, 0, . . . , 0)

)
.

If ΛP,1 > 0, then ΛP,j := 0, (ζP )j := 0 and u[j] := u[1] for all 1 < j ≤ n. Else
we choose an element ζ2 := ζ

(
P, (u[1])2

)
∈ F which determines λP

(
(u[1])2

)

(see 3.2.1(i)), i. e.

either vP
(
(u[1])2 + (ζp2 − ζ2)

)
= −λP

(
(u[1])2

)

or vP
(
(u[1])2 + (ζp2 − ζ2)

)
≥ 0

and set ΛP,2 := λP
(
(u[1])2

)
and (ζP )2 := ζ2. Now we set recursively as long

as ΛP,i−1 = 0
u[i] := u[i−1] + ℘(ζ [i]),

where ζ [i] ∈ Wn(F ) is given by

(ζ [i])j =

{

ζi j = i

0 else.
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Here ζi := ζ
(
P, (u[i−1])i

)
∈ F is an element which determines λP

(
(u[i−1])i

)
,

that is,

vP
(
(u[i−1])i + (ζpi − ζi)

)
= vP

(
(u[i])i

)

{

= −λP
(
(u[i−1])i

)
or

≥ 0

and set
ΛP,i := λP

(
(u[i−1])i

)
and (ζP )i := ζi. (4.3.a)

If we reach an 1 ≤ r ≤ n with ΛP,r > 0, then we stop this procedure and set

ΛP,j := 0, (ζP )j := 0 and u[j] := u[r] for all r < j ≤ n. (4.3.b)

Note that, if 1 < l < j ≤ n, then the first l coordinates of u[l] and u[j] are
equal and

u[n] =
(
(u[0])1 + ((ζP )p1 − (ζP )1), . . . , (u

[n−1])n + ((ζP )pn − (ζP )n)
)
.

Moreover, since
(u[l])l = (u[l−1])l + (ζpl − ζl)

we have
λP

(
(u[l−1])l

)
= λP

(
(u[l])l

)
= · · · = λP

(
(u[j])l

)
.

The new Artin-Schreier-Witt generator of E/F which is obtained by the
above procedure is

yP := y + ζP (4.3.c)

with
uP := ℘(yP ) = u[n] = u+ ℘ (ζP ) (4.3.d)

i. e. Ej = Ej−1((yP )j) and

(yP )pj − (yP )j = (uP )j + zP,j−1,

where zP,j−1 ∈ Ej−1 is as in (3.2.g).

4.3.1 Remark (Computing the inertia field of a place P ∈ PF). We
denote by Pj an arbitrary extension of P to Ej. Since the Ej (0 ≤ j ≤ n) are
the only subfields of En, we know from 1.2.6 that the inertia field of Pn over
P is Et for some 0 ≤ t ≤ n, i. e. P is unramified in Et/F and Pj is totally
ramified in El/Ej for each t ≤ j < l ≤ n. We claim that

t =

{

n if ΛP,i for all 1 ≤ i ≤ n

min{1 ≤ j − 1 ≤ n | ΛP,j−1 > 0} else.
(4.3.e)
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From 3.2.1 we know that Pj−1 is unramified in Ej/Ej−1 iff
λPj−1

((uP )j + zP,j−1) = 0. Therefore we have established (4.3.e) if we show
that

ΛP,j = λPj−1
((uP )j + zP,j−1) for 1 ≤ j ≤ t+ 1. (4.3.f)

Since ΛP,1 = · · · = ΛP,t = 0 and zP,j−1 is a polynomial expression in (yP )l,
(uP )l and zP,l−1 (1 ≤ l < j − 1) with coefficients in the prime field of F (see
remark 3.2.7), we have

vPj−1
(zP,j−1) ≥ 0, 1 ≤ j ≤ t+ 1. (4.3.g)

For 1 ≤ j ≤ t we have ΛP,j = 0 and vP ((uP )j) ≥ 0. Therefore

vPj−1
((uP )j + zP,j−1) ≥ 0 (4.3.h)

and thus λPj−1
((uP )j + zP,j−1) = 0. It follows that P is unramified in Et/E.

On the other hand, if t < n and j = t + 1, i. e. vP ((uP )t+1) = −ΛP,t+1 < 0,
then strict triangularity and (4.3.g) yield

vPt((uP )t+1 + zP,t) = vPt((uP )t+1) = vP ((uP )t+1) (4.3.i)

and we have proved (4.3.f) and hence (4.3.e). �

For later reference we note the following: since Pt+1|Pt is totally ramified and
Pt|P is unramified we have

0 > p · vPt

(
(uP )t+1 + zP,t

)
= vPt+1

(
(uP )t+1 + zP,t

)

≥ min
{
vPt+1

(
(yP )pt+1

)
, vPt+1

(
(yP )t+1

)}

= p · vPt+1

(
(yP )t+1

)
,

i. e. (together with (4.3.i))

−ΛP,t+1 = vP
(
(uP )t+1

)
= vPt

(
(uP )t+1 + zP,t

)
= vPt+1

(
(yP )t+1

)
. (4.3.j)

Note that all the above equations do not depend on the choice of the place
Pj over P for all 1 ≤ j ≤ t + 1.

4.3.2 Remark. We keep the notation of the above remark. In particular,
Et is the inertia field of P in E. For each 1 ≤ i ≤ t consider the minimal
polynomial

χ`

(yP )i, Ei

‹

Ei−1

´(T ) = T p − T −
(
(uP )i + zP,i−1

)



4.3. ARTIN-SCHREIER-WITT EXTENSIONS 61

of (yP )i ∈ Ei over Ei−1 (where zP,i−1 ∈ Ei−1 is as in (3.2.g), see remark 3.2.7).
For each Pi−1 ∈ PEi−1

with Pi−1|P we know from (4.3.h)

χ`

(yP )i, Ei

‹

Ei−1

´(T ) ∈ OPi−1
[T ].

This implies that for each 1 ≤ i ≤ t the element (yP )i is integral over P . �

We now split S into subsets. We define

A := {P ∈ S | vP (ui) ≥ 0 for all 1 ≤ i ≤ n},

B := Bn+1 :=
{
P ∈ S \ A

∣
∣ ΛP,i = 0 for all 1 ≤ i ≤ n

}
(4.3.k)

and for 1 ≤ j ≤ n

Bj := {P ∈ S | ΛP,i = 0 for 1 ≤ i < j and ΛP,j > 0}. (4.3.l)

Note that all the above sets are pairwise disjoint and that their union equals
S. From remark 4.3.1 we know that A∪B equals the set of places of S which
are unramified in E/F and that, if P ∈ Bj, then Ej−1 is the inertia field of
P , that is, P is unramified in Ej−1/F and totally ramified in El/Ej−1 for
each j ≤ l ≤ n. We have

A := S \ A =
n+1⋃

j=1

Bj.

We proceed by computing B1, . . . , Bn+1. For this purpose we define for 1 ≤
i ≤ n

Ai := {P ∈ S | vP (ui) < 0 and vP (uj) ≥ 0 for all 1 ≤ j < i}

= {P ∈ S | vP (ui) < 0 and P /∈ Aj for all 1 ≤ j < i}.

These sets are also pairwise disjoint and their union equals A. Moreover,
they are given explicitly. Therefore our task of computing B1, . . . , Bn+1 can
be solved by finding r with P ∈ Br for each P ∈ Al, 1 ≤ l ≤ n. This can
be done as follows using the definitions and procedures described in the first
part of this section. If P ∈ Al, then obviously

ΛP,j = 0 for all 1 ≤ j < l.

All we have to do is to compute ΛP,l,ΛP,l+1, . . . until we find r ≥ l with
ΛP,r > 0 (because this means P ∈ Br). We summarize this in the following
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4.3.3 Algorithm.

Input: P ∈ Al for some 1 ≤ l ≤ n.

Output: ζP and ΛP as defined in (4.3.a) and (4.3.b) and r with
P ∈ Br.

1. m← l−1, λ← 0

2. for i in [1..n] do

3. (ζP )i ← 0, ΛP,i ← 0

4. end for

5. while λ = 0 and m < n do

6. m← m+ 1

7. ζ, λ← Reduction (P, um) (see algorithm 3.2.2)

8. (ζP )m ← ζ, ΛP,i ← λ

9. u← u+ ℘(Z), where Z ∈ Wn(F ) is given by

Zj =

{

ζ j = m

0 else

10. end while

11. if m = n and λ = 0 do

12. r ← m+1

13. else do

14. r ← m

15. end if

16. return ζP , ΛP , r.
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For each P we now also can compute yP and uP as in (4.3.c) and (4.3.d). Of
course, yP = y and uP = u for all P ∈ A.

Let P ∈ S. In order to compute generators of OP (E) we first choose 1 ≤ t ≤
n such that Et is the inertia field of P , i. e.

t =

{

n P ∈ A ∪B

r − 1 P ∈ Br.

We recall from remark 4.3.2 that for each 1 ≤ i ≤ t and each Pi−1 ∈ PEi−1

with Pi−1|P we have

χ`

(yP )i, Ei

‹

Ei−1

´(T ) = T p − T −
(
(uP )i + zP,i−1

)
∈ OPi−1

[T ]. (4.3.m)

Moreover,

vPi

(
χ′̀

(yP )i, Ei

‹

Ei−1

´

(
(yP )i

))
= 0 (4.3.n)

for all Pi ∈ PEi
with Pi|Pi−1. From (4.3.m), (4.3.n) and 1.2.13(i) follows

OPi−1
(Ei) = OPi−1

[
(yP )i

]
. (4.3.o)

With 4.1.3 then follows

OP (Et) = OP
[
(yP )1, . . . , (yP )t

]
. (4.3.p)

We are done if t = n. Otherwise we still have to consider the ramified part.
Let Pt,1, . . . , Pt,r be all the places of Et and Pn,1, . . . , Pn,r be all the places of
En above P with Pn,i|Pt,i. For each 1 ≤ i ≤ r we choose a prime element πi
for Pn,i. From (4.3.p), 1.2.13(ii) and 4.1.2 then follows

OP (En) = OP
[
(yP )1, . . . , (yP )t, π1, . . . , πr

]
.

This set of OP -generators of OP (E) is in general of course not a subset of
OS . In the following propositions we will show how to compute S-integral
generators of OP (E) over OP successively for the places P in the sets A,
B1, . . . , Bn+1.
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Using the definition in Proposition 4.1.5 we define the following subset of A:

A′ := {P ∈ A | vP (δyi
) > 0 for some 1 ≤ i ≤ n}. (4.3.q)

4.3.4 Proposition (S-integral OP -generators of OP (E) for P ∈ A).

Set

ΩA\A′ := {yiδyi
| 1 ≤ i ≤ n}.

Then

(i) yiδyi
∈ OS(E) for each 1 ≤ i ≤ n.

(ii) For all P ∈ A \ A′ we have

OP (E) = OP
[
ΩA\A′

]
.

Let now P ∈ A′. For each 1 ≤ i ≤ n we use Strong Approximation to find
γP,i ∈ F with

vP (γP,i) = −vP (δyi
) and

vQ(γP,i) ≥ 0 for all Q ∈ S \ {P}.

Define

ΩP := {yiδyi
γP,i | 1 ≤ i ≤ n}. (4.3.r)

Then

(iii) yiδyi
γP,i ∈ OS(E) for each 1 ≤ i ≤ n.

(iv) OP (E) = OP
[
ΩP

]
.

Proof. (i) and (iii) follow from 4.1.5.

Let P ∈ A \ A′. For all 1 ≤ i ≤ n we have vP (δyi
) = 0, hence δyi

is a unit in
OP . Therefore (with (4.3.o))

OPi−1
(Ei) = OPi−1

[
yi

]
= OPi−1

[
yiδyi

]

for each place Pi−1 of Ei−1 over P . (ii) then follows from 4.1.3.

If P ∈ A′, then vP (δyi
γP,i) = 0 for all 1 ≤ i ≤ n, hence δyi

γP,i is a unit in OP .
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Like above, with (4.3.o) follows

OPi−1
(Ei) = OPi−1

[
yi

]
= OPi−1

[
yiδyi

γP,i
]

for all 1 ≤ i ≤ n and each place Pi−1 of Ei−1 over P . Again, 4.1.3 gives
(iv).

4.3.5 Proposition (S-integral OP -generators of OP (E) for P ∈ B).
Let P ∈ B. For each 1 ≤ i ≤ n we use Strong Approximation to select
γP,i ∈ F with

vP
(
γP,i

)
= −vP

(
δ(yP )i

)
and

vQ(γP,i) ≥ 0 for all Q ∈ S \ {P}.

Define
ΩP := {(yP )i δ(yP )i

γP,i | 1 ≤ i ≤ n}. (4.3.s)

Then

(i) (yP )iδ(yP )i
γP,i ∈ OS(E) for each 1 ≤ i ≤ n.

(ii) OP (En) = OP
[
ΩP

]
.

Proof. (i) follows from 4.1.5.

Since vPi−1

(
δ(yP )i

γP,i
)

= 0 for each 1 ≤ i ≤ n and each place Pi−1 of Ei−1

over P , (ii) follows with the same argumentation as in the proof of 4.3.4 from
4.1.3.

4.3.6 Proposition (S-integral OP -generators of OP (E) for P ∈ Bn).
Let P ∈ Bn and t := n − 1, i. e. Et is the inertia field of P in En. For each
1 ≤ i ≤ t we use Strong Approximation to find γP,i ∈ F with

vP
(
γP,i

)
= −vP

(
δ(yP )i

)
and

vQ(γP,i) ≥ 0 for all Q ∈ S \ {P}.

Since for all Pn ∈ PEn with Pn|P we have vPn

(
(yP )n

)
= −ΛP,n 6≡ 0 mod p

(this was shown in (4.3.j)), there exist l and s ∈ Z≥0 such that
s · p− l · ΛP,n = 1. We choose θP,n ∈ F with

vP
(
θP,n

)
= s− l · vP

(
δ(yP )n

)
and

vQ(θP,n) ≥ 0 for all Q ∈ S \ {P}

and define
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ΩP :=
{

(yP )iδ(yP )i
γP,i

∣
∣
∣ 1 ≤ i ≤ t

}

∪
{

θP,n
(
(yP )nδ(yP )n

)l
}

. (4.3.t)

Then

(i) (yP )iδ(yP )i
γP,i ∈ OS(E) for each 1 ≤ i ≤ t.

(ii) θP,n
(
(yP )nδ(yP )n

)l
∈ OS(E).

(iii) OP (En) = OP
[
ΩP

]
.

Proof. (i) follows from 4.1.5.

vP
(
δ(yP )i

γP,i
)

= 0 for each 1 ≤ i ≤ t. Hence δ(yP )i
γP,i is a unit in OP . With

(4.3.o) follows

OPi−1
(Ei) = OPi−1

[
(yP )i

]
= OPi−1

[
(yP )iδ(yP )i

γP,i
]

(4.3.u)

for all 1 ≤ i ≤ t and each place Pi−1 of Ei−1 over P .

Since l ≥ 0,

vQ′

(

θP,n
(
(yP )nδ(yP )n

)l
)

≥ 0

for all places Q′ of E over Q with Q ∈ S \ {P} follows from 4.1.5 and the
definition of θP,n. Now

vPn

(

θP,n
(
(yP )nδ(yP )n

)l
)

= vP
(
θP,n

)
· e(Pn|P ) + l · vPn

(
(yP )n

)
+ l · vP

(
δ(yP )n

)
· e(Pn|P )

= sp− l · vP
(
δ(yP )n

)
· p− l · ΛP,n + l · vP

(
δ(yP )n

)
· p

= s · p− l · ΛP,n

= 1,

for all places Pn of E over P . This gives (ii) and

OPt(En) = OPt

[

θP,n
(
(yP )nδ(yP )n

)l
]

(4.3.v)

for all Pt ∈ PEt with Pt|P . (iii) follows with 4.1.3 from (4.3.u) and (4.3.v).
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We are now left with the task to find a set of generators for each P ∈ Br,
1 ≤ r < n. Set t := r − 1, i. e. Et the inertia field of P in En. For each
1 ≤ i ≤ t we use Strong Approximation to find γP,i ∈ F with

vP
(
γP,i

)
= −vP

(
δ(yP )i

)
and

vQ(γP,i) ≥ 0 for all Q ∈ S \ {P}.

We have

ypn − yn = un + zn−1 ∈ En−1.

Let Pt,1, . . . , Pt,r be all the places of Et, Pn−1,1, . . . , Pn−1,r be all the places of
En−1 and Pn,1, . . . , Pn,r be all the places of En above P with Pn,j|Pn−1,j|Pt,j.
Since each Pn−1,j is totally ramified in the Artin-Schreier extension En/En−1

we know from 3.2.1 that there exists an element ρP,j of En−1 such that

vPn−1,j

(
un + zn−1 + (ρpP,j − ρP,j)

)
=: −mP,j < 0 (4.3.w)

with mP,j 6≡ 0 mod p. Therefore we can choose lP,j and sP,j ∈ Z≥0 such that

sP,j · p
n−t − lP,j ·mP,j = 1.

(Note that pn−t = e(Pn,j|Pt,j) = e(Pn,j|P ).) Now yn+ρP,j is an Artin-Schreier
generator of En/En−1,

(yn + ρP,j)
p − (yn + ρP,j) = ypn − yn + ρpP,j − ρP,j = un + zn−1 + (ρpP,j − ρP,j)

and

vPn,j
(yn + ρP,j) =

1

p
· vPn,j

(
un + zn−1 + (ρpP,j − ρP,j)

)
= −mP,j.

Select θP,n,j ∈ F with

vP (θP,n,j) = sP,j − lP,j · vP
(
δ(yn+ρP,j)

)
and

vQ(θP,n,j) ≥ 0 for all Q ∈ S, Q 6= P.
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4.3.7 Proposition (S-integral OP -generators of OP (E) for P ∈ Br,
1 ≤ r < n). Suppose we are in the situation just described. We set

ΩP :=
{

(yP )iδ(yP )i
γP,i

∣
∣
∣ 1 ≤ i ≤ t

}

∪
{

θP,n,j
(
(yn + ρP,j)δ(yn+ρP,j)

)lP,j

∣
∣
∣ 1 ≤ j ≤ r

}

.
(4.3.x)

Then

(i) (yP )iδ(yP )i
γP,i ∈ OS(E) for each 1 ≤ i ≤ t.

(ii) θP,n,j
(
(yn + ρP,j)δ(yn+ρP,j)

)lP,j ∈ OS(E) for all 1 ≤ j ≤ r.

(iii) OP (En) = OP
[
ΩP

]
.

Proof. Like before, (i) and

vQ′

(

θP,n,j
(
(yn + ρP,j)δ(yn+ρP,j)

)lP,j

)

≥ 0

for all places Q′ of E over Q with Q ∈ S \ {P} and all 1 ≤ j ≤ r follow from
4.1.5 and the definition of γP,i and θP,n,j, respectively . Now

vPn,j

(

θP,n,j
(
(yn + ρP,j)δ(yn+ρP,j)

)lP,j

)

= vP
(
θP,n,j

)
· e(Pn,j|P ) + lP,j · vPn,j

(
yn + ρP,j

)
+ lP,j · vP

(
δ(yn+ρP,j)

)
· e(Pn,j|P )

= sP,jp
n−t − lP,j · vP

(
δ(yn+ρP,j)

)
· pn−t − lP,j ·mP,j + lP,j · vP

(
δ(yn+ρP,j)

)
· pn−t

= s · pn−t − lP,j ·mP,j

= 1

for all 1 ≤ j ≤ r. This gives (ii) and

OPt,j
(En) = OPt,j

[

θP,n,j
(
(yn + ρP,j)δ(yn+ρP,j)

)lP,j

]

(4.3.y)

for all 1 ≤ j ≤ r. Since vP
(
δ(yP )i

γP,i
)

= 0 for each 1 ≤ i ≤ t and each place
Pi−1 of Ei−1 over P , δ(yP )i

γP,i is a unit in OP and therefore (by (4.3.o)) we
have

OPi−1
(Ei) = OPi−1

[
(yP )i

]
= OPi−1

[
(yP )iδ(yP )i

γP,i
]
. (4.3.z)

(iii) now follows with 4.1.2 and 4.1.3 from (4.3.z) and (4.3.y).

Like for Kummer extensions in the last section, we now summarize the above
results and give an algorithm which computes for each Artin-Schreier-Witt
extension E of a function field F and each ∅ 6= S $ PF a set of OS -generators
of OS(E):
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4.3.8 Algorithm.

Input: An Artin-Schreier-Witt extension E = F (y)/F and
∅ 6= S $ PF .

Output: A set Ω of OS-generators of OS(E).

1. Compute the set A′ (see (4.3.q)).

2. Compute the sets B1, . . . , Bn+1 (see (4.3.k) and (4.3.l)) using algorithm
4.3.3.

3. Compute ΩA\A′ as in Proposition 4.3.4.

4. For each P ∈ A′ compute ΩP (see (4.3.r)) and set

ΩA′ :=
⋃

P∈A′

ΩP .

5. For each P ∈ B compute ΩP (see (4.3.s)) and set

ΩB :=
⋃

P∈B

ΩP .

6. For each 1 ≤ i ≤ n and each P ∈ Bi compute ΩP (see (4.3.t) and
(4.3.x)) and set

ΩBi
:=

⋃

P∈Bi

ΩP .

7. return Ω := ΩA\A′ ∪ ΩA′ ∪ ΩB ∪ ΩB1 ∪ · · · ∪ ΩBn .

The correctness of this algorithm follows from

S = A \ A′ ∪ A′ ∪B ∪ B1 ∪ · · · ∪Bn

and Theorem 4.1.1. We have shown that the sets ΩA\A′ , ΩA′ , ΩB and ΩBi
,

1 ≤ i ≤ n, are contained in OS(E). They are finite since A′, B and Bi,
1 ≤ i ≤ n, are finite. Therefore Ω is a finite subset of OS(E).
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Chapter 5

Examples

In this final chapter we examine a list of examples and compare our method
to compute a maximal order of a Kummer or Artin-Schreier-Witt extension
E of a global function field F with the Round 2 based method.

In most of the examples we compute the finite maximal order O 0
E of E, in

one group of examples the infinite maximal order O∞
E . We list the examples

in single consecutively numbered tables. We now describe the table entries
whose meaning is not obvious.

T1 is the time our algorithm needed for the computation. With the imple-
mentation we used the actual calculation of the generators (which is done
using algorithm 4.2.4 and 4.3.8, respectively) takes less than 1 percent of the
time T1. The most part is needed for creating the order which is spanned
by these generators.

disc
(
O 0
E

)
denotes the discriminant of O 0

E and ind1

(
O 0
E

)
the index of O 0

E over
the finite equation order O 0

E,eq of E. O 0
E,eq is defined in the following way:

Let F/k be a function field with finite maximal order O 0
F and E = F (y),

g(y) = 0 for some irreducible polynomial

g(t) = tn +
an−1

bn−1
tn−1 + · · ·+

a0

b0
∈ F [t],

where ai, bi ∈ O
0
F . If d is a (lowest) common multiple of b0, . . . , bn−1, then dy

is a zero of the irreducible polynomial

(dt)n +
an−1

bn−1
d(dt)n−1 + · · ·+

a0

b0
dn,

which has coefficients in O 0
F . We set O 0

E,eq := O 0
F [dy]. Now, T2 is the time

which the Round 2 algorithm needed to compute the maximal order as an

71
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overorder of O 0
E,eq. Since in our cases ind1

(
O 0
E

)
is an ideal which has prime

factors of fairly high degree, this method soon reaches its limits. To overcome
this problem and get more realistic times to compare our algorithm with, in
most of the examples we also include the time T3 which the Round 2 algo-
rithm needed to compute O 0

E as an overorder of another order O 0
E,1 ⊇ O

0
E,eq,

whose index in O 0
E has less prime factors with smaller powers. We denote

this index by ind2

(
O 0
E

)
. To get O 0

E,1 we set h := gd
t−y
∈ E[t]. Then g is a

polynomial with coefficients β0, . . . , βn−1 ∈ O
0
E and

O 0
E,1 := O 0

F [β0, . . . , βn−1]

is an overorder of O 0
E,eq (see [BLP93, p. 88]).

The corresponding symbols disc
(
O∞
E

)
, ind1

(
O∞
E

)
and ind2

(
O∞
E

)
for the infi-

nite maximal orders are defined in an analogous way.

We write “???” in the cases where the computation of the maximal order
was not finished after more than two days.

All computations have been carried out with the computer algebra system
MAGMA [C+04] on a Pentium IV, 2.8 GHz, 1024 MB-RAM.

5.1 Kummer extensions

In this section we look at three groups of examples of Kummer extensions
E/F . We examine the runtime of both methods with increasing degree n
of the extension. We always start with a field k of p elements, p a natural
prime, then adjoin a primitive n-th root of unity to k to get the field Fq, q
a power of p. In the third row of each table we print the defining equation
f(x, ρ) = 0 of the function field F = Fq(x, ρ).

In the first group of examples we compute the finite maximal order O 0
E of E.
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1. T1 = 62 s T2 = 621 s T3 = 104 s

q = 55, [F : Fq(x)] = 5, n = 11

F = Fq(x, ρ): ρ5 + 4ρ4 + x2ρ3 + 2ρ2 + x5ρ+ x + 1 = 0

E = F (y): yn− u = 0, u = x11+4x10+x8+4x7+x5+4x4+x2+4x+1
x4+4x3+x+4

ρ4 + 1
x2+3

ρ+ x2

disc
(
O 0
E

)
= p10

1 p10
2 p10

3 p10
4 p10

5 p10
6 p10

7 p10
8 p10

9 p10
10p

10
11p

10
12p

10
13p

10
14p

10
15p

10
16p

10
17

ind1

(
O 0
E

)
= p45

1 p45
2 p45

3 p45
7 p45

8 p45
11p

45
12p

45
13p

45
14p

55
18

ind2

(
O 0
E

)
= p10

18

2. T1 = 69 s T2 = 570 s T3 = 146 s

q = 52, [F : Fq(x)] = 5, n = 12

F = Fq(x, ρ): ρ5 + 4ρ4 + x2ρ3 + 2ρ2 + x5ρ+ x + 1 = 0

E = F (y): yn− u = 0, u = x11+4x10+x8+4x7+x5+4x4+x2+4x+1
x4+4x3+x+4

ρ4 + 1
x2+3

ρ+ x2

disc
(
O 0
E

)
= p11

1 p11
2 p11

3 p11
4 p11

5 p11
6 p11

7 p11
8 p11

9 p11
10p

11
11p

11
11p

11
13p

11
14p

11
15p

11
16p

11
17p

11
18p

11
19p

11
20p

11
21p

11
22

ind1

(
O 0
E

)
= p55

1 p55
2 p55

3 p55
4 p55

6 p55
7 p55

8 p55
11p

55
12p

55
13p

55
15p

66
23

ind2

(
O 0
E

)
= p11

23

3. T1 = 100 s T2 = 1533 s T3 = 248 s

q = 54, [F : Fq(x)] = 5, n = 13

F = Fq(x, ρ): ρ5 + 4ρ4 + x2ρ3 + 2ρ2 + x5ρ+ x + 1 = 0

E = F (y): yn− u = 0, u = x11+4x10+x8+4x7+x5+4x4+x2+4x+1
x4+4x3+x+4

ρ4 + 1
x2+3

ρ+ x2

disc
(
O 0
E

)
= p12

1 p12
2 p12

3 p12
4 p12

5 p12
6 p12

7 p12
8 p12

9 p12
10p

12
11p

12
12p

12
13p

12
14p

12
15p

12
16p

12
17p

12
18p

12
19p

12
20p

12
21

p12
22p

12
23p

12
24p

12
25p

12
26p

12
27p

12
28p

12
29p

12
30p

12
31p

12
32

ind1

(
O 0
E

)
= p66

1 p66
2 p66

3 p66
4 p66

6 p66
7 p66

8 p66
11p

66
12p

66
13p

66
15p

66
16p

66
17p

66
18p

66
19p

66
20p

66
21p

66
22p

66
23p

66
24p

66
25p

78
33

ind2

(
O 0
E

)
= p12

33
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4. T1 = 145 s T2 = 1913 s T3 = 305 s

q = 56, [F : Fq(x)] = 5, n = 14

F = Fq(x, ρ): ρ5 + 4ρ4 + x2ρ3 + 2ρ2 + x5ρ+ x + 1 = 0

E = F (y): yn− u = 0, u = x11+4x10+x8+4x7+x5+4x4+x2+4x+1
x4+4x3+x+4

ρ4 + 1
x2+3

ρ+ x2

disc
(
O 0
E

)
= p13

1 p13
2 p13

3 p13
4 p13

5 p13
6 p13

7 p13
8 p13

9 p13
10p

13
11p

13
12p

13
13p

13
14p

13
15p

13
16p

13
17p

13
18p

13
19p

13
20p

13
21

p13
22p

13
23p

13
24p

13
25p

13
26

ind1

(
O 0
E

)
= p78

1 p78
2 p78

3 p78
4 p78

5 p78
6 p78

10p
78
11p

78
12p

78
13p

78
14p

78
15p

78
16p

78
19p

78
20p

91
27

ind2

(
O 0
E

)
= p13

27

5. T1 = 338 s T2 = 3441 s T3 = 603 s

q = 54, [F : Fq(x)] = 5, n = 16

F = Fq(x, ρ): ρ5 + 4ρ4 + x2ρ3 + 2ρ2 + x5ρ+ x + 1 = 0

E = F (y): yn − u = 0, u = x11+4x10+x8+4x7+x5+4x4+x2+4x+1
x4+4x3+x+4

ρ4 + 1
x2+3

ρ+ x2

disc
(
O 0
E

)
= p15

1 p15
2 p15

3 p15
4 p15

5 p15
6 p15

7 p15
8 p15

9 p15
10p

15
11p

15
12p

15
13p

15
14p

15
15p

15
16p

15
17p

15
18p

15
19p

15
20p

15
21

p15
22p

15
23p

15
24p

15
25p

15
26p

15
27p

15
28p

15
29p

15
30p

15
31p

15
32

ind1

(
O 0
E

)
= p105

1 p105
2 p105

3 p105
4 p105

6 p105
7 p105

8 p105
11 p105

12 p105
13 p105

15 p105
16 p105

17 p105
18 p105

19 p105
20 p105

21

p105
22 p105

23 p105
24 p105

25 p120
33

ind2

(
O 0
E

)
= p15

33

6. T1 = 843 s T2 = 10209 s T3 = 1305 s

q = 52, [F : Fq(x)] = 5, n = 24

F = Fq(x, ρ): ρ5 + 4ρ4 + x2ρ3 + 2ρ2 + x5ρ+ x + 1 = 0

E = F (y): yn− u = 0, u = x11+4x10+x8+4x7+x5+4x4+x2+4x+1
x4+4x3+x+4

ρ4 + 1
x2+3

ρ+ x2

disc
(
O 0
E

)
= p23

1 p23
2 p23

3 p23
4 p23

5 p23
6 p23

7 p23
8 p23

9 p23
10p

23
11p

23
12p

23
13p

23
14p

23
15p

23
16p

23
17p

23
18p

23
19p

23
20p

23
21p

23
22

ind1

(
O 0
E

)
= p253

1 p253
2 p253

3 p253
4 p253

5 p253
6 p253

7 p253
8 p253

9 p253
10 p253

11 p253
12 p253

13 p253
14 p253

15 p276
23

ind2

(
O 0
E

)
= p23

23

The difference between the next examples and the previous is that the in-
dices ind1

(
O 0
E

)
and ind2

(
O 0
E

)
have prime factors of higher degree. Here we

observe that our method yields much better results compared to the Round
2 algorithm.
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7. T1 = 5 s T2 = 2581 s T3 = 539 s

q = 36, [F : Fq(x)] = 2, n = 28

F = Fq(x, ρ): ρ2 + 2ρ+ x3 + x + 1 = 0

E = F (y): yn − u = 0, u = 1
x2ρ + x2

disc
(
O 0
E

)
= p24

1 p27
2 p27

3 p27
4 p27

5 p27
6 p27

7

ind1

(
O 0
E

)
= p1446

1

ind2

(
O 0
E

)
= p42

1

8. T1 = 14 s T2 = 15989 s T3 = 4160 s

q = 330, [F : Fq(x)] = 2, n = 31

F = Fq(x, ρ): ρ2 + 2ρ+ x3 + x + 1 = 0

E = F (y): yn − u = 0, u = 1
x2ρ + x2

disc
(
O 0
E

)
= p30

1 p30
2 p30

3 p30
4 p30

5 p30
6 p30

7

ind1

(
O 0
E

)
= p1785

1

ind2

(
O 0
E

)
= p45

1

9. T1 = 15 s T2 = 6894 s T3 = 1720 s

q = 34, [F : Fq(x)] = 2, n = 40

F = Fq(x, ρ): ρ2 + 2ρ+ x3 + x + 1 = 0

E = F (y): yn − u = 0, u = 1
x2ρ + x2

disc
(
O 0
E

)
= p36

1 p39
2 p39

3 p39
4 p39

5 p39
6 p39

7 p39
8 p39

9

ind1

(
O 0
E

)
= p3024

1

ind2

(
O 0
E

)
= p60

1
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10. T1 = 37 s T2 = ??? T3 = 29264 s

q = 310, [F : Fq(x)] = 2, n = 61

F = Fq(x, ρ): ρ2 + 2ρ+ x3 + x+ 1 = 0

E = F (y): yn − u = 0, u = 1
x2ρ+ x2

disc
(
O 0
E

)
= p60

1 p60
2 p60

3 p60
4 p60

5 p60
6 p60

7

ind1

(
O 0
E

)
= p7170

1

ind2

(
O 0
E

)
= p90

1

11. T1 = 975 s T2 = ??? T3 = ???

q = 320, [F : Fq(x)] = 2, n = 100

F = Fq(x, ρ): ρ2 + 2ρ+ x3 + x+ 1 = 0

E = F (y): yn − u = 0, u = 1
x2ρ+ x2

disc
(
O 0
E

)
= p96

1 p99
2 p99

3 p99
4 p99

5 p99
6 p99

7 p99
8 p99

9

ind1

(
O 0
E

)
= p19554

1

12. T1 = 367 s T2 = ??? T3 = ???

q = 310, [F : Fq(x)] = 2, n = 122

F = Fq(x, ρ): ρ2 + 2ρ+ x3 + x+ 1 = 0

E = F (y): yn − u = 0, u = 1
x2ρ+ x2

disc
(
O 0
E

)
= p120

1 p121
2 p121

3 p121
4 p121

5 p121
6 p121

7

ind1

(
O 0
E

)
= p29222

1

13. T1 = 1751 s T2 = ??? T3 = ???

q = 312, [F : Fq(x)] = 2, n = 140

F = Fq(x, ρ): ρ2 + 2ρ+ x3 + x+ 1 = 0

E = F (y): yn − u = 0, u = 1
x2ρ+ x2

disc
(
O 0
E

)
= p136

1 p139
2 p139

3 p139
4 p139

5 p139
6 p139

7 p139
8 p139

9

ind1

(
O 0
E

)
= p38574

1
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14. T1 = 3276 s T2 = ??? T3 = ???

q = 38, [F : Fq(x)] = 2, n = 160

F = Fq(x, ρ): ρ2 + 2ρ+ x3 + x + 1 = 0

E = F (y): yn − u = 0, u = 1
x2ρ + x2

disc
(
O 0
E

)
= p156

1 p159
2 p159

3 p159
4 p159

5 p159
6 p159

7 p159
8 p159

9

ind1

(
O 0
E

)
= p50484

1

In the last group of examples in this section we compute the infinite maximal
order O∞

E of the Kummer extension E.

15. T1 = 1 s T2 = 33 s T3 = 8 s

q = 34, [F : Fq(x)] = 3, n = 5

F = Fq(x, ρ): ρ3 − (x+ 1)ρ2 + 2xρ− x5 = 0

E = F (y): yn − u = 0, u = (x3 + 2)ρ2 + (x2 + 1)ρ+ 1

disc
(
O∞
E

)
= p4

1

ind1

(
O∞
E

)
= p170

1

ind2

(
O∞
E

)
= p44

1

16. T1 = 3 s T2 = 437 s T3 = 43 s

q = 34, [F : Fq(x)] = 3, n = 10

F = Fq(x, ρ): ρ3 − (x+ 1)ρ2 + 2xρ− x5 = 0

E = F (y): yn − u = 0, u = (x3 + 2)ρ2 + (x2 + 1)ρ+ 1

disc
(
O∞
E

)
= p9

1

ind1

(
O∞
E

)
= p855

1

ind2

(
O∞
E

)
= p99

1
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17. T1 = 12 s T2 = 3459 s T3 = 212 s

q = 34, [F : Fq(x)] = 3, n = 16

F = Fq(x, ρ): ρ3 − (x + 1)ρ2 + 2xρ− x5 = 0

E = F (y): yn − u = 0, u = (x3 + 2)ρ2 + (x2 + 1)ρ+ 1

disc
(
O∞
E

)
= p15

1

ind1

(
O∞
E

)
= p2370

1

ind2

(
O∞
E

)
= p165

1

18. T1 = 18 s T2 = 6400 s T3 = 283 s

q = 34, [F : Fq(x)] = 3, n = 20

F = Fq(x, ρ): ρ3 − (x + 1)ρ2 + 2xρ− x5 = 0

E = F (y): yn − u = 0, u = (x3 + 2)ρ2 + (x2 + 1)ρ+ 1

disc
(
O∞
E

)
= p19

1

ind1

(
O∞
E

)
= p3800

1

ind2

(
O∞
E

)
= p209

1

19. T1 = 385 s T2 = 32722 s T3 = 1645 s

q = 311, [F : Fq(x)] = 3, n = 23

F = Fq(x, ρ): ρ3 − (x + 1)ρ2 + 2xρ− x5 = 0

E = F (y): yn − u = 0, u = (x3 + 2)ρ2 + (x2 + 1)ρ+ 1

disc
(
O∞
E

)
= p22

1

ind1

(
O∞
E

)
= p5093

1

ind2

(
O∞
E

)
= p246

1
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20. T1 = 2060 s T2 = ??? T3 = 12302 s

q = 328, [F : Fq(x)] = 3, n = 29

F = Fq(x, ρ): ρ3 − (x+ 1)ρ2 + 2xρ− x5 = 0

E = F (y): yn − u = 0, u = (x3 + 2)ρ2 + (x2 + 1)ρ+ 1

disc
(
O∞
E

)
= p28

1

ind1

(
O∞
E

)
= p8246

1

ind2

(
O∞
E

)
= p308

1

5.2 Artin-Schreier-Witt Extensions

In the first group of examples (1. - 10.) we compute the finite maximal order
of different Artin-Schreier extensions. In every step we increase the degree p
of the extension.

1. T1 = 3 s T2 = 22 s T3 = 16 s

p = 5, q = 5, [F : Fq(x)] = 3,

F = Fq(x, ρ): ρ3 − (x+ 1)ρ2 + 2xρ− x5 = 0

E = F (y): yp − y = u, u = x5

x3−1
ρ2 + x6+x2+1

x6−1
ρ+ 1

x5

disc
(
O 0
E

)
= p8

1p
8
2p

8
3p

8
4p

8
5p

8
6p

8
7p

8
8p

8
9p

8
10p

8
11

ind1

(
O 0
E

)
= p46

1 p46
2 p46

3 p6
4p

6
5p

6
6p

6
7p

6
8p

6
9p

6
10p

6
11p

10
12

ind2

(
O 0
E

)
= p16

1 p16
2 p16

3 p4
12

2. T1 = 4 s T2 = 77 s T3 = 18 s

p = 7, q = 7, [F : Fq(x)] = 3,

F = Fq(x, ρ): ρ3 − (x+ 1)ρ2 + 2xρ− x5 = 0

E = F (y): yp − y = u, u = x5

x3−1
ρ2 + x6+x2+1

x6−1
ρ+ 1

x5

disc
(
O 0
E

)
= p36

1 p36
2 p36

3 p12
4 p12

5 p12
6 p12

7 p12
8 p12

9 p12
10p

18
11p

12
12p

12
13p

12
14p

12
15

ind1

(
O 0
E

)
= p87

1 p87
2 p87

3 p15
4 p15

5 p15
6 p15

7 p15
8 p15

9 p15
10p

33
11p

15
12p

15
13p

15
14p

15
15

ind2

(
O 0
E

)
= p12

1 p12
2 p12

3 p3
11
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3. T1 = 5 s T2 = 499 s T3 = 63 s

p = 11, q = 11, [F : Fq(x)] = 3,

F = Fq(x, ρ): ρ3 − (x + 1)ρ2 + 2xρ− x5 = 0

E = F (y): yp − y = u, u = x5

x3−1
ρ2 + x6+x2+1

x6−1
ρ+ 1

x5

disc
(
O 0
E

)
= p60

1 p60
2 p60

3 p20
4 p20

5 p20
6 p20

7 p20
8 p20

9 p20
10p

20
11

ind1

(
O 0
E

)
= p245

1 p245
2 p245

3 p45
4 p45

5 p45
6 p45

7 p45
8 p45

9 p45
10p

45
11

ind2

(
O 0
E

)
= p20

1 p20
2 p20

3

4. T1 = 20 s T2 = 15073 s T3 = 1829 s

p = 23, q = 23, [F : Fq(x)] = 3,

F = Fq(x, ρ): ρ3 − (x + 1)ρ2 + 2xρ− x5 = 0

E = F (y): yp − y = u, u = x5

x3−1
ρ2 + x6+x2+1

x6−1
ρ+ 1

x5

disc
(
O 0
E

)
= p132

1 p132
2 p132

3 p44
4 p44

5 p44
6 p44

7 p44
8 p44

9 p44
10p

44
11

ind1

(
O 0
E

)
= p1199

1 p1199
2 p1199

3 p231
4 p231

5 p231
6 p231

7 p231
8 p231

9 p231
10 p231

11

ind2

(
O 0
E

)
= p44

1 p44
2 p44

3

5. T1 = 36 s T2 = 57512 s T3 = 4240 s

p = 31, q = 31, [F : Fq(x)] = 3,

F = Fq(x, ρ): ρ3 − (x + 1)ρ2 + 2xρ− x5 = 0

E = F (y): yp − y = u, u = x5

x3−1
ρ2 + x6+x2+1

x6−1
ρ+ 1

x5

disc
(
O 0
E

)
= p180

1 p180
2 p180

3 p60
4 p60

5 p60
6 p60

7 p60
8 p60

9 p60
10p

60
11p

60
12p

60
13p

60
14p

60
15p

60
16p

60
17

ind1

(
O 0
E

)
=p2235

1 p2235
2 p2235

3 p435
4 p435

5 p435
6 p435

7 p435
8 p435

9 p435
10 p435

11 p435
12 p435

13 p435
14 p435

15 p435
16 p435

17

ind2

(
O 0
E

)
= p60

1 p60
2 p60

3
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6. T1 = 475 s T2 = 691322 s T3 = 35290 s

p = 53, q = 53, [F : Fq(x)] = 3,

F = Fq(x, ρ): ρ3 − (x+ 1)ρ2 + 2xρ− x5 = 0

E = F (y): yp − y = u, u = x5

x3−1
ρ2 + x6+x2+1

x6−1
ρ+ 1

x5

disc
(
O 0
E

)
= p312

1 p312
2 p312

3 p104
4 p104

5 p104
6 p104

7 p104
8 p104

9 p104
10 p104

11

ind1

(
O 0
E

)
= p6734

1 p6734
2 p6734

3 p1326
4 p1326

5 p1326
6 p1326

7 p1326
8 p1326

9 p1326
10 p1326

11

ind2

(
O 0
E

)
= p104

1 p104
2 p104

3

7. T1 = 300 s T2 = ??? T3 = 79350 s

p = 61, q = 61, [F : Fq(x)] = 3,

F = Fq(x, ρ): ρ3 − (x+ 1)ρ2 + 2xρ− x5 = 0

E = F (y): yp − y = u, u = x5

x3−1
ρ2 + x6+x2+1

x6−1
ρ+ 1

x5

disc
(
O 0
E

)
= p360

1 p360
2 p360

3 p120
4 p120

5 p120
6 p120

7 p120
8 p120

9 p120
10 p120

11 p120
12 p120

13 p120
14 p120

15 p120
16 p120

17

ind1

(
O 0
E

)
= p8970

1 p8970
2 p8970

3 p1770
4 p1770

5 p1770
6 p1770

7 p1770
8 p1770

9 p1770
10 p1770

11 p1770
12 p1770

13

p1770
14 p1770

15 p1770
16 p1770

17

ind2

(
O 0
E

)
= p120

1 p120
2 p120

3

8. T1 = 488 s T2 = ??? T3 = ???

p = 71, q = 71, [F : Fq(x)] = 3,

F = Fq(x, ρ): ρ3 − (x+ 1)ρ2 + 2xρ− x5 = 0

E = F (y): yp − y = u, u = x5

x3−1
ρ2 + x6+x2+1

x6−1
ρ+ 1

x5

disc
(
O 0
E

)
= p420

1 p420
2 p420

3 p140
4 p140

5 p140
6 p140

7 p140
8 p140

9 p140
10 p140

11 p140
12 p140

13

ind1

(
O 0
E

)
= p12215

1 p12215
2 p12215

3 p2415
4 p2415

5 p2415
6 p2415

7 p2415
8 p2415

9 p2415
10 p2415

11 p2415
12 p2415

13
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9. T1 = 1859 s T2 = ??? T3 = ???

p = 83, q = 83, [F : Fq(x)] = 3,

F = Fq(x, ρ): ρ3 − (x + 1)ρ2 + 2xρ− x5 = 0

E = F (y): yp − y = u, u = x5

x3−1
ρ2 + x6+x2+1

x6−1
ρ+ 1

x5

disc
(
O 0
E

)
= p492

1 p492
2 p492

3 p164
4 p164

5 p164
6 p164

7 p164
8 p164

9 p164
10 p164

11 p164
12

ind1

(
O 0
E

)
= p16769

1 p16769
2 p16769

3 p3321
4 p3321

5 p3321
6 p3321

7 p3321
8 p3321

9 p3321
10 p3321

11 p3321
12

10. T1 = 62226 s T2 = ??? T3 = ???

p = 97, q = 97, [F : Fq(x)] = 3,

F = Fq(x, ρ): ρ3 − (x + 1)ρ2 + 2xρ− x5 = 0

E = F (y): yp − y = u, u = x5

x3−1
ρ2 + x6+x2+1

x6−1
ρ+ 1

x5

disc
(
O 0
E

)
= p576

1 p576
2 p576

3 p192
4 p192

5 p192
6 p192

7 p192
8 p192

9 p192
10 p192

11 p192
12 p192

13 p192
14 p192

15 p192
16 p192

17

ind1

(
O 0
E

)
= p22992

1 p22992
2 p22992

3 p4560
4 p4560

5 p4560
6 p4560

7 p4560
8 p4560

9 p4560
10 p4560

11 p4560
12 p4560

13

p4560
14 p4560

15 p4560
16 p4560

17

In the next examples (11. - 17.) we consider a fixed Artin-Schreier extension
E/F and compute the finite maximal order of constant field extensions of E.

11. T1 = 9 s T2 = 1141 s T3 = 192 s

p = 13, q = 13, [F : Fq(x)] = 3,

F = Fq(x, ρ): ρ3 − (x + 1)ρ2 + 2xρ− x5 = 0

E = F (y): yp − y = u, u = x5

x3−1
ρ2 + x6+x2+1

x6−1
ρ+ 1

x5

disc
(
O 0
E

)
= p72

1 p72
2 p72

3 p24
4 p24

5 p24
6 p24

7 p24
8 p24

9 p24
10p

24
11p

24
12p

24
13p

24
14p

24
15

ind1

(
O 0
E

)
= p354

1 p354
2 p354

3 p66
4 p66

5 p66
6 p66

7 p66
8 p66

9 p66
10p

66
11p

66
12p

66
13p

66
14p

66
15p

78
16

ind2

(
O 0
E

)
= p24

13p
24
14p

24
15p

12
16



5.2. ARTIN-SCHREIER-WITT EXTENSIONS 83

12. T1 = 14 s T2 = 2958 s T3 = 226 s

p = 13, q = 135, [F : Fq(x)] = 3,

F = Fq(x, ρ): ρ3 − (x+ 1)ρ2 + 2xρ− x5 = 0

E = F (y): yp − y = u, u = x5

x3−1
ρ2 + x6+x2+1

x6−1
ρ+ 1

x5

disc
(
O 0
E

)
= p72

1 p72
2 p72

3 p24
4 p24

5 p24
6 p24

7 p24
8 p24

9 p24
10p

24
11p

24
12p

24
13p

24
14p

24
15

ind1

(
O 0
E

)
= p354

1 p354
2 p354

3 p66
4 p66

5 p66
6 p66

7 p66
8 p66

9 p66
10p

66
11p

66
12p

66
13p

66
14p

66
15p

78
16

ind2

(
O 0
E

)
= p24

13p
24
14p

24
15p

12
16

13. T1 = 54 s T2 = 8990 s T3 = 559 s

p = 13, q = 1310, [F : Fq(x)] = 3,

F = Fq(x, ρ): ρ3 − (x+ 1)ρ2 + 2xρ− x5 = 0

E = F (y): yp − y = u, u = x5

x3−1
ρ2 + x6+x2+1

x6−1
ρ+ 1

x5

disc
(
O 0
E

)
= p72

1 p72
2 p72

3 p24
4 p24

5 p24
6 p24

7 p24
8 p24

9 p24
10p

24
11p

24
12p

24
13p

24
14p

24
15p

24
16p

24
17p

24
18

ind1

(
O 0
E

)
= p354

1 p354
2 p354

3 p66
4 p66

5 p66
6 p66

7 p66
8 p66

9 p66
10p

66
11p

66
12p

66
13p

66
14p

66
15p

66
16p

66
17p

66
18p

78
19

ind2

(
O 0
E

)
= p24

16p
24
17p

24
18p

12
19

14. T1 = 81 s T2 = 20004 s T3 = 1148 s

p = 13, q = 1320, [F : Fq(x)] = 3,

F = Fq(x, ρ): ρ3 − (x+ 1)ρ2 + 2xρ− x5 = 0

E = F (y): yp − y = u, u = x5

x3−1
ρ2 + x6+x2+1

x6−1
ρ+ 1

x5

disc
(
O 0
E

)
= p72

1 p72
2 p72

3 p24
4 p24

5 p24
6 p24

7 p24
8 p24

9 p24
10p

24
11p

24
12p

24
13p

24
14p

24
15p

24
16p

24
17p

24
18

ind1

(
O 0
E

)
= p354

1 p354
2 p354

3 p66
4 p66

5 p66
6 p66

7 p66
8 p66

9 p66
10p

66
11p

66
12p

66
13p

66
14p

66
15p

66
16p

66
17p

66
18p

78
19

ind2

(
O 0
E

)
= p24

16p
24
17p

24
18p

12
19
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15. T1 = 163 s T2 = ??? T3 = 1708s

p = 13, q = 1330, [F : Fq(x)] = 3,

F = Fq(x, ρ): ρ3 − (x + 1)ρ2 + 2xρ− x5 = 0

E = F (y): yp − y = u, u = x5

x3−1
ρ2 + x6+x2+1

x6−1
ρ+ 1

x5

disc
(
O 0
E

)
= p72

1 p72
2 p72

3 p24
4 p24

5 p24
6 p24

7 p24
8 p24

9 p24
10p

24
11p

24
12p

24
13p

24
14p

24
15p

24
16p

24
17p

24
18p

24
19p

24
20

ind1

(
O 0
E

)
= p354

1 p354
2 p354

3 p66
4 p66

5 p66
6 p66

7 p66
8 p66

9 p66
10p

66
11p

66
12p

66
13p

66
14p

66
15p

66
16p

66
17p

66
18p

66
19p

66
20p

78
21

ind2

(
O 0
E

)
= p24

18p
24
19p

24
20p

12
21

16. T1 = 247 s T2 = ??? T3 = 2499 s

p = 13, q = 1340, [F : Fq(x)] = 3,

F = Fq(x, ρ): ρ3 − (x + 1)ρ2 + 2xρ− x5 = 0

E = F (y): yp − y = u, u = x5

x3−1
ρ2 + x6+x2+1

x6−1
ρ+ 1

x5

disc
(
O 0
E

)
= p72

1 p72
2 p72

3 p24
4 p24

5 p24
6 p24

7 p24
8 p24

9 p24
10p

24
11p

24
12p

24
13p

24
14p

24
15p

24
16p

24
17p

24
18

ind1

(
O 0
E

)
= p354

1 p354
2 p354

3 p66
4 p66

5 p66
6 p66

7 p66
8 p66

9 p66
10p

66
11p

66
12p

66
13p

66
14p

66
15p

66
16p

66
17p

66
18p

78
19

ind2

(
O 0
E

)
= p24

16p
24
17p

24
18p

12
19

17. T1 = 6016 s T2 = ??? T3 = 16860 s

p = 13, q = 1350, [F : Fq(x)] = 3,

F = Fq(x, ρ): ρ3 − (x + 1)ρ2 + 2xρ− x5 = 0

E = F (y): yp − y = u, u = x5

x3−1
ρ2 + x6+x2+1

x6−1
ρ+ 1

x5

disc
(
O 0
E

)
= p72

1 p72
2 p72

3 p24
4 p24

5 p24
6 p24

7 p24
8 p24

9 p24
10p

24
11p

24
12p

24
13p

24
14p

24
15p

24
16p

24
17p

24
18

ind1

(
O 0
E

)
= p354

1 p354
2 p354

3 p66
4 p66

5 p66
6 p66

7 p66
8 p66

9 p66
10p

66
11p

66
12p

66
13p

66
14p

66
15p

66
16p

66
17p

66
18p

78
19

ind2

(
O 0
E

)
= p24

16p
24
17p

24
18p

12
19

In the last examples we compute the finite maximal order of Artin-Schreier-
Witt Extensions E/F of degree p2, p = 3, 5, 7 and p3, p = 2, 3, respectively.
Here ℘ : Wn(F̄ ) → Wn(F̄ ), n = 2, 3, is the Artin-Schreier-Witt map which
was defined in Proposition 3.2.3.
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18. T1 = 3 s T2 = 33 s

p = 3, q = 3, [F : Fq(x)] = 2,

F = Fq(x, ρ): ρ2 + x3 + x + 1 = 0

E = F
(
(y1, y2)

)
: ℘

(
(y1, y2)

)
=

(
1
x2ρ+ x2, 1

x−1
ρ+ x

)

disc
(
O 0
E

)
= p48

1 p12
2

ind1

(
O 0
E

)
= p444

1 p138
2 p3

3p
3
4p

3
5p

3
6p

12
7 p12

8 p12
9

19. T1 = 658 s T2 = 2175s

p = 5, q = 5, [F : Fq(x)] = 2,

F = Fq(x, ρ): ρ2 + x3 + x + 1 = 0

E = F
(
(y1, y2)

)
: ℘

(
(y1, y2)

)
=

(
1

x2+3
ρ+ x2, 1

x−1
ρ+ x

)

20. T1 = 542 s T2 = ???

p = 7, q = 7, [F : Fq(x)] = 2,

F = Fq(x, ρ): ρ2 + x3 + x + 1 = 0

E = F
(
(y1, y2)

)
: ℘

(
(y1, y2)

)
=

(
1

x2+3
ρ+ x2, 1

x−1
ρ+ x

)

21. T1 = 451 s T2 = ???

p = 2, q = 2, [F : Fq(x)] = 3,

F = Fq(x, ρ): ρ3 − ρ2 + 2xρ− x5 = 0

E = F
(
(y1, y2, y3)

)
:

℘
(
(y1, y2, y3)

)
=

(
(x+1)ρ2 + 1

x2+1
ρ+x

2
, (x3 +x

2)ρ2 + 1

x+1
ρ+x,

1

x2+1
ρ
2 +(x6 +1)ρ+ 1

x12

)

22. T1 = 34586 s T2 = ???

p = 3, q = 3, [F : Fq(x)] = 2,

F = Fq(x, ρ): ρ2 + x3 + x + 1 = 0

E = F
(
(y1, y2, y3)

)
:

℘
(
(y1, y2, y3)

)
=

(
(x+ 2)ρ+ 1

x2 , (x
3 + x2)ρ + 1

x+2
, 1
x2ρ + x6 + 2

)



86 CHAPTER 5. EXAMPLES



List of Symbols

k field

k(x) rational function field

F , F/k function field

E, E/F function field extension

O valuation ring

P , Q places of a function field

P ′|P extension of places

PF set of places of F

v valuation

vP valuation for the place P

OP valuation ring of P

OP residue class field OP/P of P

e(P ′|P ) ramification index of P ′|P

f(P ′|P ) relative degree of P ′|P

Cl(R,F ) the integral closure of the ring R in F

S subset of PF

OS holomorphy ring

OP (E) Cl(OP , E)

OS(E) Cl(OS , E)

χ`

y,E
‹

F
´(T ) the the minimal polynomial of y ∈ E over F

Z rational integers
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Fq finite field of q elements

p rational prime

F Frobenius map

W (E) ring of Witt vectors over E

Wn(E) ring of Witt vectors of length n over E

FixL
‹

F (H) the fixed field of the subgroupH of the Galois
group of the extension L/F

GalL
‹

F (E),
Gal(L/E)

the Galois group of the subfield E of the Ga-
lois extension L/F

|G| the order of the (finite) group G

gcd greatest common divisor
∏

outer direct product
∐

inner direct product
⊕

direct sum

AH see (2.1.a)

GB see (2.1.b)

F (B) see (2.1.c)

AE see (2.1.d)

NE2/E1 norm map

TrE2/E1
trace map

℘ surjective G-homomorphism, see (2.1.h)

µ℘ the kernel of ℘

∆U , ∆u see definition on p. 21

∆ see definition in the proof of Theorem 2.3.1

ι ,1 see (2.2.a)

ι ,2 see (2.2.b)

φ ,1 see (2.2.c)

φ ,2 see (2.2.d)

λP (u) see (3.2.1)(i)
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Abstract

Let F be a field and L be an arbitrary (finite or infinite) Galois extension of
F with Galois group G. We give a detailed presentation of general Kummer
theory, which gives us an abstract tool to characterize all Abelian extensions
E of F with E ⊆ L: Let A be a subset of Lm which has a group structure
which is compatible with the coordinatewise operation of G on A. Then
A is called a G-module. Furthermore let ℘ : A → A be a surjective G-
homomorphism with finite cyclic kernel µ℘. Then there is a bijection between
the set of subgroups ∆ of A with ℘(A ∩ Fm) ⊆ ∆ ⊆ A ∩ Fm and the set of
Abelian extensions E of F of exponent |µ℘| (with E ⊆ L).

We then use general Kummer theory to describe Kummer and Artin-Schreier-
Witt extensions. Suppose F contains the set of all n-th roots of unity, where
the characteristic of F is zero or coprime to n. Then a Kummer extension of
F is an Abelian extension of exponent n. Abelian extensions F of exponent
pr, where p > 0 is the characteristic of F , are called Artin-Schreier-Witt
extensions.

Let k be a finite (in particular perfect) field and F/k be an algebraic function
field over k, i. e.

F = k(x, ρ) with f(x, ρ) = 0

for some irreducible polynomial f ∈ k[x, t] which is monic and separable with
respect to t. Let ∅ 6= S be a proper subset of the set of places PF of F and
E a cyclic Kummer or Artin-Schreier-Witt extension of F . The main result
of this thesis is the development of a procedure to compute the ring OS(E)
of elements of E which are integral at all places of S. We present algorithms
which determine a set Ω of OS-generators of OS(E).

This is done by computing for each P in S a set ΩP of S-integral generators
of OP (E) over OP . The set which consists of the union of all ΩP is the
sought-after set Ω of OS-generators of OS(E). Ω is finite since the sets ΩP

are equal for all but finitely many P ∈ S.

At the end we give examples which demonstrate the efficiency of our method
for computing integral closures by comparing it with a general method, which
is based on the Round 2 algorithm.
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