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INTRODUCTION A

Introduction

The set of all rational functions over a field k, i. e. functions of the form ’q%,
where p(z) and ¢(x) are polynomials over k, form a field k(z) under the usual
arithmetic operations. As in the case of number fields, if we adjoin a root of
an irreducible polynomial f(x,t) to k(x) we again obtain a field, say F', that
contains k(x) as a subfield. The field F' is called an algebraic function field.

If k is a finite field, then F' is said to be global.

Since the 1930s it is well known that the global function fields together with
the number fields form a class of fields, called global fields. These admit a
class field theory, that is, they allow a description of all Abelian extensions.
(An Abelian extension is a Galois extension whose automorphism group is
Abelian.) Global function fields have been investigated by pure mathemati-
cians ever since. However, while it is relatively easy to compute examples of
number fields by hand this is hard in the case of function fields, because of
the complexity of even basic operations like addition of elements.

While computations in number fields have been the focus of research in com-
puter algebra since the 1970s, function fields have been neglected until re-
cently. They were deemed to be too complicated. However, the development
of highly efficient methods in the number field case together with the avail-
ability of relatively cheap fast computers brought the function fields into
interest of computational researchers.

Work by the Russian mathematician Goppa (see for instance [Gop81],
[Gop88]) added a new dimension to the interest in function fields. He demon-
strated that they can be used to define good error-correcting codes, i. e. codes
that allow the correction of many data transmission or storage errors in com-
parison to their size. These codes are dramatically better than any previ-
ously constructed codes. By “better” we mean that the Goppa codes allow
the correction of more transmission errors in comparison to the block length
(number of symbols transmitted) of the code.

Let F' = k(x)[t]/f(x,t) be a function field. A place of F' is called rational if
it has degree 1. The rational places correspond to the roots of f in k. If one
considers f as defining a curve, then the set of rational places corresponds
to the set of points on the curve over k. However, as our approach is based
entirely on function field methods, we will use function field terminology.

In order to obtain good codes using Goppa’s construction, it is necessary to
find function fields having as many rational places as possible. A field E
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with a large number of rational places may be constructed by taking a small
field F' where the number of places is known and constructing extensions F
of F' such that the splitting behaviour of the places is known in advance from
theory. Class field theory is the most powerful technique currently available
for building such extensions. In particular, using class field towers, it is
possible to prove the existence of large good codes.

To be able to work efficiently with the resulting Abelian extensions of large
degree it is important to develop explicit techniques for the fast computation
of integral closures of Kummer extensions, Artin-Schreier-Witt extensions
and their composita. In particular Artin-Schreier-Witt extensions have never
been the focus of algorithmic investigation.

Integral bases of Kummer extensions of number fields were already treated by
Daberkow ([Dab95]). He only obtains integral bases of Kummer extensions
of prime degree directly. Integral bases of general cyclic Kummer extensions
have to be computed in steps of prime degree, which involves computations
in relative extensions of the ground field.

A (general) Kummer extension is an Abelian extension of exponent n of a field
F which contains the set of all n-th roots of unity, where the characteristic
of F' is zero or coprime to n. Abelian extensions of a field F' of exponent
p", where p > 0 is the characteristic of F', are called Artin-Schreier-Witt
extensions.

The existing general methods to determine integral closures are based on
the Round 2 algorithm (see for instance [PZ89], [Fri97] and [Fri00]). This
approach is of limited use in fields of large degree. In this thesis we develop a
special method to compute an as small as possible set of “small” generators
of the integral closures of Kummer and Artin-Schreier-Witt extensions.

A brief summary of this thesis follows.

Besides two short introductory sections about localization and Witt vectors,
the main part of the first chapter introduces all the needed definitions, nota-
tions and facts about algebraic function fields. Moreover, we have developed
an algorithmic version of the strong approximation theorem, a tool which is
frequently used in this thesis.

In the second chapter we give a detailed exposition of General Kummer
Theory, which describes an abstract method for the characterization of all
Abelian extension of a given field.

In the third chapter we use the results of chapter two to describe Kummer
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and Artin-Schreier-Witt extensions and list some important properties.

The fourth chapter contains the main results of this thesis, namely the com-
putation of integral closures of Kummer and Artin-Schreier-Witt extensions.
Let F' be a function field, ) # S ;Cé Pr a set of places of F' and F a Kummer
or an Artin-Schreier-Witt extension of F. We present algorithms for com-
puting the set of Os(FE)-integral elements of E. This is done by calculating
for each P € S a local integral basis for £/ F. The set {2 which consists of all
these elements is then a set of generators of Og(E) over Og (this is assured

by Theorem ET]T]).

Our algorithms were implemented using the algorithmic number theory tool
MAGMA [CT04]. In the fifth chapter we give examples which demonstrate
the efficiency of our method for computing integral closures by comparing it
with the general method.
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Chapter 1

Foundations

1.1 Localization of Rings and Modules

In this section we introduce very shortly some basic facts about localization.
We mainly only use the definitions and results of this section in Proposition
and Theorem EETTl We refer the reader for instance to Chapter 5 and
9 of [ABT4] (this is the source where we are citing from).

Let A be a multiplicative subset of an integral domain R, i.e. a subset of
R with 1 € A and 0 € A which is closed under multiplication. The subring
R4 of the quotient field Q(R) of R consisting of all quotients ~ with r» € R
and s € A is called the localization of R with respect to A. We denote
the canonical injection R — R4 by ¢.

For each R-module M consider the equivalence relation ~ on M x A given
by

(mq,s1) ~ (Mg, $2) <= ds € A with s(mysy — mas;) = 0.
We denote the equivalence class of an element (m,s) by . Now the set of
equivalence classes (M x A)/A becomes an R4-module in an obvious way.
We call this module the localization of M with respect to A and denote
it by M4. We can use the canonical morphism R — R, to consider M as

an R-module. The canonical injection M — M, is then easily seen to be an
R-module homomorphism.

From now on all rings are supposed to be integral domains.

1.1.1 Proposition ([AB74, 1.5, p.314]). Let A be a multiplicative subset

1



2 CHAPTER 1. FOUNDATIONS
of a ring R.
(i) If f: R — T is a ring morphism with the property that f(s) is a unit

for all s € A, then there is a unique ring morphism 1 : Ry — T such
that the following diagram commutes:

/

R4

R f

(ii) Leth: R — R’ be a ring morphism with the property that h(s) is a unit
in R' for all s € A. Suppose that for each ring morphism f: R — T
with f(s) is a unit in T for all s € A there is a unique ring morphism
o5 R — T such that the following diagram commutes:

rR—TI .7
x‘%f
R/

If now T equals Ra and f is the canonical injection ¢ : R — Ry, then
¢, 18 a ring isomorphism.

1.1.2 Proposition ([AB74, 2.2, p.317]). Let A be a multiplicative subset
of a ring R.

(i) Let M be an R-module. If M is generated by a subset X of M as an
R-module, then the image of X in M under the canonical morphism
generates My as an Ra-module.

(ii) If f : M — N is an R-module homomorphism, then there ezists a
unique morphism fa : My — Na such that the following diagram
commutes:

M—t N

My

Na
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The only example of localization we will consider is the following: For any
prime ideal p of a ring R, the set A := R\ p is a multiplicative subset of R. In
this case the localization of R (respectively of an R-module M) with respect
to A is called the localization of R (respectively M) at p and is denoted
by R, (respectively M,). If f: M — N is an R-module homomorphism,
then the unique homomorphism M, — N, of the last proposition is denoted

by fp.

We now finish this first section with the following

1.1.3 Proposition ([AB74, 3.10, p.323]). Let f : M — N be an R-
module homomorphism. Then f is a monomorphism (epimorphism, iso-
morphism) iff f, is a monomorphism (epimorphism, isomorphism) for all
maximal ideals p in R.

1.2 Algebraic Function Fields

In this section we give all the necessary basic definitions, notations and facts
about algebraic function fields which are used in this thesis. Unless otherwise
stated, we will very closely follow the book of Stichtenoth [Sti93], Chapters
[ and III.

Throughout this section, let k be an arbitrary perfect field. An (algebraic)
function field F'/k (of one variable) over £ is a finite algebraic extension
of the rational function field k(z) for some x € F' which is transcendental
over k. k is the constant field and the algebraic closure & of k in F the full
constant field of F. If k is finite then F/k is a global function field. The
rational function field is no invariant of F'/k, since it depends on the choice
of x. There always exist x and p in F' such that

- f(z, p) = 0 for some irreducible polynomial f € k[x,¢] which is monic
and separable with respect to ¢ and deg, f = n.

- F =k(x,p) and [F : k(z)] = n.

Such z is called a separating element for F'/k.

1.2.1 Definition and Proposition. A ring k C O C F with z € O or
271 € O for all 0 # z € F is called a valuation ring of F/k. Such a ring
has the following properties:
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(i) O is a local ring with (unique) maximal ideal P = O\ O* where O* is
the set of units of O.

(ii) For0#£a€eF:a€e P+ a'¢O.

(iii) P is principal, i.e. P = O -t for some t € O. t is called a prime
element for P.

(iv) Each element 0 # a € F has a unique representation of the form
a = ut" for some u € O and some integer n.

A place of F' is the unique maximal ideal of some valuation ring O of F.
Since O is uniquely determined by P ([L2ZII(ii)), we write Op := O and call
Op the valuation ring of P. We denote by Pr the set of places of F.

1.2.2 Definition. A discrete valuation of F/k is a function v : F' —
Z U {oo} with the following properties:

(i) v
(i

)
)
(i)
)
)

a) =00 <= a=0.
ab) = v(a) +v(b) for all a, b € F.

<

(
(
(
(
(

v(a +b) > min{v(a),v(b)} for all a, b € F.
(iv) v(z) =1 for some z € F.
(v) v(a) =0 for any 0 # a € k.

A stronger version of (iii) is given by

1.2.3 Lemma (Strict Triangularity). If v(a) # v(b), then

v(a+b) = min{v(a),v(b)}.

We now use the representation of an element 0 # a € F' given in [LZTI(vi) to
define a discrete valuation vp for any place P of F' by

vp(0) ;=00 and wvp(a) =vp(ut") :=n

(note that this definition does not depend on the choice of the prime element
t). Then
Op ={a € F | vp(a) > 0},

Op ={a € F |vp(a) =0}
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and
P:={a€ F|vp(a) > 0}.

If on the other hand v is a discrete valuation of F'/k, then the set
{a € F|v(a) >0}

is a place of F' and
{a € F|vp(a) >0}

is the corresponding valuation ring. To summarize the above, one has bijec-
tions between the sets of places, valuations and valuation rings of F' given
by

P —— vp «—— Op.

TE field Op := Op /P is called the residue class field of P and the integer
[Op : k| the degree of P.

1.2.4 Definition. Let F//k be a function field with full constant field k. A
function field E/K (where K is the full constant field of E) is called an
algebraic extension of F/k, if E/F is an algebraic field extension and
k C K. The extension is a constant field extension if £ = FK. A place
P’ € Py is said to lie over P € Pr if P C P’. We also say P’ is above P,
P’ is an extension of P or P lies under P’ and write P’'|P.

1.2.5 Remark. In the situation of [LZ4 the following three assertions are
equivalent:

(1) P'|P.
(2) Op C Opr.

(3) There exists an integer e := e(P’|P) > 1 with vp/(z) = evp(x) for all
x e F.

If P'|P then P = P'NF and Op = Op. N F. For each P’ € Pg there is
exactly one place P € Pp lying under P’, namely P’ N F. On the other
hand, any place P € P has at least one, but only finitely many extensions
P’ € Py. Moreover, we have a canonical embedding Op — Opr.

f(P'|P) := [Op: : Op] is called the relative degree of P’ over P. It is finite
iff £/F is a finite extension. e(P’|P) is called the ramification index of P’
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over P. If the function field L is an algebraic extension of E and P” € Py, a
place above P’, then

e(P"|P) = e(P"|P")e(P'|P) and f(P"|P) = f(P"|P")f(F'|P).

The extension P'|P is ramified if e(P’|P) > 1, otherwise it is unramified.
P is called totally ramified in F if there is exactly one extension P’ of P
in £ and e(P'|P) = [E : F|. P is completely inert in E if there is exactly
one extension P’ of P in E and f(P'|P) = [E : F]. And P is completely
decomposed in E if there are exactly n := [E : F] extensions Py, ..., P, of
P. To finish this remark suppose P4, ..., P, are all the places of ¥ above P.
Then

T

> e(P|P)f(P|P) = [E: F. (12.a)

i=1

The following remark describes the relatively easy ramification behaviour
of places in a finite Galois extension. Recall that a finite algebraic field
extension F/F' is Galois if the automorphism group

Aut (E/F):={0o: F — FE | o is an automorphism

and o(a) = a for each a in F'}

has order [E : F]. In such a case, Aut (E/F) is called the Galois group of
E/F and is denoted by Gal(E/F).

1.2.6 Remark. (Hilbert’s ramification theory) Let E/F be a finite
Galois extension of function fields with Galois group G := Gal(E/F') and
Py, ..., P. be all the extensions of a place P of F' to E. Then all the ramifi-
cation indices and relative degrees of P;|P are equal, i.e.

e(P|P) = e(P[P) = e(P) and f(P|P) = f(P,|P) = f(P) for all i,
and therefore (see (CZal)) e(P)f(P)r = [E : F]. For each 1 <i <r we call
Gz(P|P):={0€G|o(P) =P}

the decomposition group and
Gr(P|P):={0 € G |vp(oz—2)>0forall z€ Op}
the inertia group of P, over P. Obviously we have

Gr(P|P) € G4(P|P) C G.
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The field Z; := Z(P;|P) := Fixg (Gz(P;|P)) is called the decomposition
field and the field T; := T(F;|P) := Fixg/p (Gr(Pi|P)) is called the inertia
field of P; over P. If we denote by Py, the restriction of P; to Z; and by Pr,
the restriction of P; to T;, then we have the following diagram:

E B
e(F|Pr,) = e(B|P) = [E : T)]
and f(PZ|PTz) =1
T Pr,
f(Pr|Pg,) = f(B|P) = [T : Zi]
and e(Pr,|Pz,) =1
Z Py
e(Pz|P) = f(Pz|P) =1
and [Z; . F] =7
F P

In particular, if £/ F is cyclic of degree p" for a prime p, then we have exactly
n — 1 intermediate fields of E/F, say

F::EOQEIQ"'gEnflgEn::E7
and [E, : E,_4] = p for all 1 <r < n. From the above it then follows that
there exist 1 <d<t<msuchthat Z7; = 7Z; =1 Z =FEjand T, =T; = T =

E, for all 1 <4,j < n. This means that P is completely decomposed in Z/F,
each Py, is completely inert in 7//Z and each Pr, is totally ramified in E/T.

1.2.7 Definition. A ring £k C R C F which is not a field is called a subring
of F/k. An element a of F' is called integral over R or R-integral if
f(a) = 0 for some monic polynomial f(X) € R[X]. The ring

Cl(R,F):={a € F | ais integral over R}

is called the integral closure of R in F'. Let ) be the quotient field of R
in F. R is called integrally closed if CI(R, Q) = R.

A ring R C F which is of the form
R=0s:={a€ F|vp(a)>0for all PeS}= () Op

PeS
for 0 £ S ; Pr is called a holomorphy ring of F'/k. A holomorphy ring is
also a subring of F'/k.

The following proposition lists some properties of holomorphy rings:
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1.2.8 Proposition. (i) For P € Pr we have Os C Op <= P € S.
(ii) The quotient field of Os is F' and Ogs is integrally closed.
(i) Os is a Dedekind domain.

(iv) There is a 1-1-correspondence between S and the set of maximal ideals
of Os, given by
P+«—— PNQOs.

(v) For each P € S, the localization (Os)pros of Os at P equals Op (this
follows from [LT(i1)).

(vi) If S is non empty and finite, then Os is a principal ideal domain.

For a subring R of I’ we define the set I'(R, F') := {P € Pr | R C Op}.
Then () # I'(R, F') G Pr and we have

Cl(R,F) = Org,p).
This implies that if E is a finite separable extension of F',
Cl(R,E) =CI(CI(R,F),E).
For ) # S G Pp we then get

Cl(@g, E) = OI‘(OS,E)

={a € FE |vp/(a) >0VP'|P, Pe S}
(1.2.b)

1.2.9 Remark. If F is a finite separable extension of F' and P € Pg or
0 #S G Pp, then we sometimes write Op(E) for Cl(Op, E) and Os(E) for
Cl(Os, E), respectively.

For a place P of ' (a set ) # S G Pr) we call the elements of Op and
Op(F) (Os and Og(FE), respectively) integral over P or simply P-integral
(integral over S or S-integral, respectively).

We now describe some special cases of holomorphy rings of a function field
F/k. The set of places of the rational function field k(x)/k is given by

Pr@) = { P} U{P; | m € k[z] irreducible},

where

Po:={g/h| g,h € klz],deg g < degh}
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and
Py = {g/h|g,h € klz],h #0,7 | g,7{h}.

The corresponding valuation rings are
Oso :={g/h | g, h € klz], deg g < deg h}

and

O :=klz], :={g/h| g, h € klx],h # 0,71 h}

respectively, and we have

Kol = (] On

wek|x]
irreducible

We define by
P, :={P € Pr | P|Py},

the set of infinite places and by
P, := Py \ Py = {P € Py | 31 € k[z], 7 irreducible and P | P,},
the set of finite places of F'. We call
O = OP°F° =Cl(Ox, F).
the infinite maximal order and
Op = 0% = (’)P% = Cl(k[z], F)
the finite maximal order of F/k.
1.2.10 Theorem. Let R be an integrally closed subring of F'/k with quotient
field F' and let E be a finite separable extension of ' of degree n. Then there

exists a basis of E/F which is contained in CI(R, E). If R is a principal ideal
domain, then there exists a basis {c,...,a,} of E/F with

CI(R,E) = ) _ Ra.

From (L2.0) and it follows that for a place P in F the integral closure
of its valuation ring Op in E is

Op(E) :=Cl(Op,E) = (| Op ={a € E |vp(a) >0VP'|P}  (1.2.c)

P'|P
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and that there exists a basis {1, ..., a,} of E/F with
CZ(OP,E) = Z OP Oy,
i=1

called an integral basis of CI(Op, E') over Op or a local integral basis of
E/F for P.

1.2.11 Remark. Throughout this thesis we use the following notation: if
E/F is a field extension and y an element of E, then we write

Xy £/r)(T) € F[T]
for the the minimal polynomial of y over F.

We finish this section with some statements concerning the ramification be-
haviour of places and special integral bases. For a place P of a function field
F and a polynomial ¢(T') = 3" ¢;T% € Op[T] we set

AT) = &T" € Op[T],

where ¢ € Op = Op/P is the residue class of ¢; € Op.

1.2.12 Theorem. Let E = F(y) be an extension of a function field F of
degree n, P a place of F' and y integral over P. Set x(T) := X(y, E/F) (T).
Let

<(1) = [[ (1)

be the decomposition of X(T') into irreducible factors over Op, i. e. the poly-
nomials v;(T) are monic, irreducible, pairwise distinct and €; > 1. For each
7i(T) we choose a monic polynomial ¢;(T) € Op[T] with ¢;(T) = v(T) and
deg ¢;(T) = deg;(T). Then there are for each 1 < i < r places P; of E over
P with

Gi(y) € P, and f(B|P) > deg(T).

If moreover {1,y,...,y" '} is an integral basis for P, then there exists for
each 1 < i <r exactly one place P; of E over P with

¢i(y) € B, [(Pi|P) = degni(T), e(P|P) = e,

and Py, ..., P. are the only places of E over F.
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Proof. See for instance [Sti93), I11.3.7]. O

1.2.13 Proposition. Let E be a finite separable extension of a function field
F of degree n.

(i) Suppose E = F(y) and x(T') = x(y, g/r)(T) is the minimal polynomial
of y. If for some P € Pr we have

X(T) € Op[T] and vp(x'(y)) =0
for all P' € Pg with P'|P then P is unramified in E and {1,y,...,y" 1}
is a local integral basis for P in E/F.

(i) If a place Q'|Q (where Q € Pr and Q' € Pg) is totally ramified in E/F
and 7 a prime element for Q', then {1,7,..., 7" '} is a local integral
basis for Q) in E/F.

Proof. [SH03, 111.5.11 and 111.5.12]. 0

1.3 Strong Approximation

A main tool for all results presented in this thesis is the strong approximation
theorem. Since it is also of independent interest, we give an algorithmic
solution in this section.

1.3.1 Theorem (Strong Approximation). Let F//F, be a function field,
0+#S ; Pr and Py, ..., P, € S. Suppose there are given aq,...,a, € F' and
ni,...,n. € Z. Then there exists an element z € F such that

vp, (2 — a;) 1<i<r, and

1.3.
vp(z) >0 forall P e S\ {P,...,P}. (13.2)

Our proof follows Stichtenoth [Sti93], but is constructive.

1.3.2 Lemma. Suppose we are in the situation of the theorem. Then there
exists an element y € F' such that

vp, (Y — a;) > n; 1<i<r, and

vp(y) >0 for all P € S\ {P,...,P}. (1.3.)
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Proof. For 1 < i < r we set n; := n; + 1. We take a divisor A of positive
degree whose support is disjoint to S. Then there exists [ € N such that the
divisor D := 1A — ", 71;P; is non-special.

We now describe how to find for each 1 < < r an element y; € F' with

Zﬁz ]_SZST,
vp, (yi) > 1 1<i<r, j#iand (1.3.¢)
>0 forall Pe S\ {P,..., P}

The element y = Y7, y; then satisfies (L3H).
If vp,(a;) > n; we can set y; := 0 and are done.

Suppose now vp, (a;) < 7;. The non-speciality of D implies Ap = Ap(D) + F.
Therefore there exists 3 € F such that (5 — «;) € Ap(D), where o; € Ap is
the adele whose P;-component equals a; and which is zero at all other com-
ponents. This implies vp, (8 — a;) > n; > vp,(a;). Strict triangularity then
yields vp, (8) = vp,(a;), therefore

ﬁ e L= L(lA — i'ﬁjpj +n; P, — UP¢<ai)Pi)
j=1

and y; := [ satisfies ((L3.d). We finish the proof by showing how to actually
compute [3:

[i] Let B :=1by,...,bsbeabasis of L (for the computation of the Riemann-
Roch spaces we refer to [Hes02]).

ii] For each element v € {a;} U B we compute a (finite) series expansion
in the following sense: Let 7w be a prime element of P; and wq,...,w;
a set of representatives of an [F,-basis of the residue class field of F;.
We set 7 := yn~"%(%) and then, iteratively for vp,(a;) < w < i, we
lift 4(P;) to v, = ZL:1 Yw,pwy and do § ;’7% This yields the

expansion » " .,y YT of 7. (Here, 7(F;) denotes the residue class

of 4 modulo P;.)
[iii] We construct a matrix M over F, whose columns correspond to the

elements of B. Let ¢ = (¢y,...,¢s) be such that Mc¢ = a; (from what
was said above it is clear that ¢ exists.)

[iv] Set 5:=>""_, ¢yb,.



1.3. STRONG APPROXIMATION

We summarize the proof of the lemma in the following algorithm:

1.3.3 Algorithm.

Input: #SCPp, P,....P,e€Sa,...,a, €F,my,...,n, €

0
Z.
Output: y € F such that vp(y —a;) > n; for all 1 <i < r and
vp(y) >0 forall Pe S\ {P,..., P}

1. for 1 <i<rdo

2. n; :=n; + 1.

3. end for

4. Choose a divisor A with deg A > 0 whose support is disjoint to S.
5. Compute [ € N such that D :=[A — E;Zl n;P; is non-special.

6. for 1 <i<rdo

7. if vp,(a;) > n; then
8. y; =10
9. else
10. Compute [ as described in [i]-[iv] in the above proof.
11. yi = [.
12. end if
13. end for

4. y=>"_u.
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Proof of Theorem [L.31l. We use algorithm to compute y € F with

vp, (Y — a;) > n; 1<i<r, and
vp(y) >0 forall Pe S\ {P,..., P}

and y € F' with
vp,(§ — ") >n, 1<i<r, and
vp(g) >0 forall Pe S\ {P,...,P.}.

The strict triangle equation then shows that the element z := y + ¢ satisfies

23). O

1.4 The Ring of Witt vectors

In this section we introduce the definition as well as important properties of
Witt vectors, which yield a basic tool for describing all Abelian extensions
of degree p" of a field of characteristic p > 0 (see Section B2). Witt vectors
were constructed by Witt in his famous work “Zyklische Korper und Algebren
der Charakteristik p vom Grad p™” ([Wit36]). Other references we use are
[Sch36al], [Sch36b], [Lor9(] and [Has&0, p. 156-161].

Let p be a natural prime number and
Z[X17}/17X27}/27'"7Xn7Yna~--]

the polynomial ring in countably many variables over the the ring Z. We
consider vectors Z = (Zy, Zs,...) with Z; € Z[X1,Y1, X5, Y5, ...] and define
formn=1,2,...

Z(n) — Zpiflzf;"—i _ Z{,n—l +pZ§n_2 i +p”*12n.
=1

These so called “Ghost components” Z( Z®) . of Z uniquely determine
the vector Z: Using the Frobenius map

F(Z):= (28,28, ...) (1.4.a)
the above definitions become

ZW =7,

1.4.b
70 = (F(Z2)" Y 4 pn 17, n> 1. (1.4b)
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From these formulas we can derive the components Z; of Z as well defined

polynomial expressions in Z1), Z® .. with coefficients in Z[%], e.g.,
AAS
1 1
2= (F(2) + (2.

Let * be one of the operations + or -. For vectors A := (A, Ay,...) and
B := (By, By, ...) with components in Z[X1, Y7, X5, Y5, ...] we define A x B
by

(Ax B)™ .= A 4 B(W), (1.4.c)

e.g.,

(A*B)l :Al*Bla

(A4 B)y = (Ay 4+ By) — 1 E B = (AT 4 BY)

p
= (A + By) — pz% (IZ’) APTH(£B)) — %B{’,

In these examples all the polynomials on the right side have integral coeffi-
cients. It is a very important fact, that this holds generally.

1.4.1 Proposition. The polynomials S} (A, B) := (AxB),, only have integral
coefficients, 1. e.

S*(A, B) € Z[X1,Y1, X2, Ya, ..., X, Ya.

Proof. See for instance [Lor90), p. 139] or [Has80), pp. 157-159). O

1.4.2 Proposition.

S#(A,B) = (A+ B);
A} £ By, —(A+ B)]

= A; + B; +
p
AY £ BY, — (A+BY, (1.4.d)
—+ p2 + ...
. AT BT (AL BT

pzl
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Proof. For all vectors Z we have

(F(2)" = (P(2) 402 (F(2))

i—1

= (F2)" 40 (F2) Ly 0 (F(2)

1—2 i—1

' " A ' (1.4.e)
= (@) 4 p(F D), + 1 (F D) g+
A p T (FUZ)) A (F (),

_ Zfiﬂ n ng¢—2 n pzZ?{;i—B N pz‘_gzg)iz + pi_ZZf,l
From (L4L) we get
(A+ B)® = (F(A+ B)“ "V +p~(A+B),

and from (CZ.d)
(A+ B)® = A® + gO
= (F(A)) Y 4 p YA £ (FB) Y £ (B),

hence

The result then follows from (CZ.d). O

Now we have seen that ([CZd) defines a ring structure on the set of vectors
7 = (Z1,Zs,...) with Z; € Z[X1,Y1,Xs,Y2,...]. The zero element is the
vector (0,0,...) (since all its ghost components are 0) and the one element
is the vector (1,0,0,...) (since all its ghost components are 1). One easily
verifies

Z: (Zl,...7Zn,0,...>+(O,...,O,ZnJrl,ZnJrQ,...) (14f>
for each vector Z = (Z1, Zs, ... ).

Let now A be an arbitrary commutative ring with 1. We denote by W (A)
the set of all vectors x = (zg, x1,...) with z; € A. Although in this case the
ghost components

™ = Zpi_lx’i’n_i (1.4.g)
i=1
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of z in general do not uniquely determine x (e.g., if A is of characteristic p),
one can show that by the above definitions
(x*y)y = Si(x,y) = Si(x1, 91,22, Y2y« -+ y Ty Yn) (1.4.h)

the set W(A) becomes a commutative ring with zero element (0,0, ...) and
one element (1,0,0,...). W(A) is called the Ring of Witt vectors over
A.

1.4.3 Remark. In order to write down some important properties of Witt
vectors we first need to generalize slightly some of our earlier notations. A
discrete valuation of a field F is a surjective mapping v : £ — Z U {co}
with the following properties:

(i) v(a) =00 <= a=0.
(ii) v(ab) =v(a)+v(b) for all a, b € E.
(iii) v(a + b) > min{v(a),v(b)} for all a, b € E.

Like in Section one has the Strict Triangle Inequality
v(a +b) = min{v(a),v(b)} ifa,b € E and v(a) # v(b).
The pair (E,v) has the following properties:

(i) The set
R:={a€ E|v(a) >0}
is a subring of F, the valuation ring of E with respect to v.
(ii) F is the quotient field of R.
(iii) p :=={a € £ | v(a) > 0} is an ideal of R, the valuation ideal with
respect to v.

(iv) R* = R\ p, i.e. p is a maximal ideal of R and each ideal a C R of R is
contained in p. Therefore R is a local ring with maximal ideal p.

(v) The field R/p is called the residue class field of F with respect to v.
Let now E be a perfect field of characteristic p. The p-fold sum of a vector

r € W(E) is given by
pr=x+---+x= (02725 ...). (1.4.1)

Therefore and since E is perfect, i.e. E = EP, the ideal p"W (E) of W(E)
equals the set of vectors whose first n component are zero. Then we can
define a map v : W(E) — Z U {oo} by

v(z) ;= min{i | ;41 # 0}.
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1.4.4 Proposition. (i) W(E) has no zero divisors. Its quotient field is
denoted by Q(E).

(ii) The canonical extension of the map v to Q(F) is a discrete valuation
with valuation ring W(E) and valuation ideal pW (E). Therefore the
units of W(E) are exactly the vectors whose first component is not zero.

(iii) Q(F) has characteristic 0.
(iv) W(F,) = Z,.

For any natural n > 0 let us now consider the Ring W,,(E) of Witt vectors
of length n (consisting of the “truncated” vectors x = (z1,...,x,)). Here
addition and multiplication is defined in the same way as above for the first
n coordinates. For this case we only note the following

1.4.5 Proposition. (i) The units of W,,(E) are exactly the vectors whose
first component is not zero.

(i) Wo(Fp) = Z/p"Z.



Chapter 2

General Kummer Theory

General Kummer theory provides us with an abstract tool to describe all
Abelian extensions of a given field F. The most important result for this
thesis is corollary to the main Theorem EZTTIl This corollary charac-
terizes all cyclic extensions of F' of a given degree.

Since the way in which the representation of general Kummer theory is given
in this chapter (and later used in this thesis) follows in most parts the lecture
script “Algebra 2” held by Florian Hef3 at TU Berlin in the winter semester
of 2003, we have decided to include all proofs. For other sources we refer the
reader for instance to [Neu92, Chapter IV] or [Coh99) 10.2].

2.1 Preliminaries

We begin by stating the main theorem of infinite Galois theory. For details we
refer the reader to [Nen92, Chapter IV.1]. We recall that a (finite or infinite)
algebraic field extension L/F' is Galois if L/F is normal and separable and
that for each sub-extension E/F of L/F the extension L/FE is Galois.

For the entire chapter we choose a field F' and an arbitrary (finite or
infinite) Galois extension L of F with Galois group G := Gal(L/F).

We equip G with the following topology: for each o € Gal(L/FE) we take the
cosets oG as a neighborhood basis of o, where F/F runs through all finite
sub-extensions of L/F. The so defined topology is called Krull topology.

19
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2.1.1 Theorem (Main Theorem of Infinite Galois Theory). Let G be
the set of closed (under the Krull topology) subgroups of G and L the set of
intermediate fields of L/F. The maps

Fix jp: G — L, HeFixpp(H):={leL|o(l)=IforaloeH}

and

Galp)p: L — G, Ew Galy/p(E):=Gal(L/E)
={oce€G|o(e)=ce foralle € E}

are mutually inverse. Under this bijection, the open subgroups of G corre-
spond ezactly to the finite sub-extensions E/F of L/F.

Consider a subset A of L™ for some m € ZZ!' on which we define a coordi-
natewise operation of G, i.e.

oa)=oc((ar,...,an)) = (c(ar),...,0(an)).

A shall possess a group structure x which is compatible with this operation,
i.e.

o(a*xb) =oc(a)*o(b)
for all 0 € G and all a,b € A. Then A is called a G-module.
For a subgroup H of G we define a subgroup A of A by
Al =lac A|o(a)=aforallo € H} (2.1.a)
and for a subset B of A a subgroup Gpg of G by
Gp:={oc € G|o(pB)=pforall g€ B}. (2.1.b)

In this way we get mappings A()(H — AH) and G()(B — GB) between G
and the set A of subsets of A.

We now use these four maps to define the maps
F():A— L, Bw F(B):=Fix;p(Gp) (2.1.c)

and

Ay L— A, Ers Ap = A%Mwr®), (2.1.d)

One easily verifies
Ap=ANE™ (2.1.e)
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Let B be a subset of A and F({B}) be the subfield of L which is obtained
by adjoining all the coordinates of the elements of B to F'. Since

GalL/F(F({B})) = {a €Glo(y)=yforalye F({B})}
:{JEG\U(ﬁ):ﬁforallﬁeB)}
:GB

we get

F({B}) = Fixyp(Gal,/r(F({B}))) = Fix;/p(Gp) = F(B)  (2.1.f)
and
Gp = Galy/p(F({B})) = Gal,/p(F(B)). (2.1.g)

Since Galy /p (F(B)) = Gal(L/F(B)) is closed (under the Krull topology) in
Gal(L/F), this last equation shows

2.1.2 Proposition. For each subset B of A the group Gp is closed in
Gal(L/F).

We know that F/(B)/F is Galois iff Gal(L/F(B)) = Gg is normal in G. We

obviously have

2.1.3 Proposition. If B C A is fized under G, then Gg is normal in G.

Let E; C E; be intermediate fields of L/F and R be a complete irreducible
set of representatives of Galy /p(Ez) in Galy,/p(E1). We now define the map

NEQ/El IAE2 —>AE17 (I'—>HT<CL>
TER
if the group structure * in A is written multiplicatively and
Trp, e, : Ap, — Ag,, a— ZT(G)
TER

if the group structure in A is written additively. (For the rest of this section
we stay with the first case, but everything works the same way for the second.)
Since for each o € Galy/p(Er) also R := {o7 | 7 € R} is a complete
irreducible set of representatives of Galy /p(E») in Galy/p(Er), we have

U<NE2/E1 (a)) = NE2/El (a)

for each o € Galy /p(E1), hence N, 5, (a) € Ap, and N, /5, is well defined.
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2.1.4 Theorem. We keep the above notations.

(i) Ng,/g, is well defined.
(ii) Ng, g, is a homomorphism.
(iii) For each a € Ag, and each o € G we have

No(g)/o(e)(0(a)) = 0 (Npgyg, (a)).

(i), (ii) and (iii) analogously hold for Trp, /g, .

Proof. (i) was shown above, (ii) is obvious and (iii) follows from the definition

and the fact that for each o € Galy /p(E1) the set R” := {oto7! | 7 €
R} is a complete irreducible set of representatives of oGal, /F(Ez)cf1 =

For the rest of this chapter we now suppose that we have a surjective
G-homomorphism
p:A— A

with finite cyclic kernel p, € Ap. Here G-homomorphism means
o(p(a)) = p(o(a)) for all 0 € G and a € A. (2.1.h)

Moreover we make the following

2.1.5 Axiomatic Assumption. Let E/F be a finite cyclic extension of F
with E C L and o a generator of Gal(E/F). Let a € Ag. Then

Np/pla)=1 <= FeAp: a=o(b)-b "
(In the additively written case this becomes

Trgp(a) =0 <= JbeAp: a=o(b)—b.)

2.1.6 Remark. We note that from EZTAiii) follows that “«<=" in (210
always holds.
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Let now U be a subset of Ar and Ay the subgroup of Ar which is generated
by the set ‘
{u'*xp(Ap) |ueU, i € Z},

i.e. the set {u | uw € U} generates the group Ay/p(Ar) (in particular
©(Ar) € Ay). Moreover, let Y C A with p(Y) = U and I'y be the subgroup
of A which is generated by the set

{y«Ap|yeY,iecZ}

(Note that for elements v and y in Ap with p(y) = v we write A, 1= Agy
and T, := 'y, respectively.) We now show

o ' (Ay) =Ty. (2.1.i)

Obviously I'y C p ' (Ay). Take a € p~'(Ay). Then
pla) =uy* * - %) * pa)
for some u; € U, \; € Z and o € Ar and
p(yi* * -+ y x a) = pla)
for some y; € Y. Therefore

a tx (gt kYt xa) € py C Ap,

i.e.a € T'y and (211 is shown.

2.1.7 Proposition. Let U C Ap. Then

(i) F({Y}) = F(Y) = F(I'v) = F(p™'(Av)) = F(p™'(1)).
(i) F(p~"(U))/F is Galois.

Proof. (i) follows directly from (2.1.1), ZT1) and the definitions. (ii) follows
since p is a G-homomorphism, U C A is invariant under G and (ZI3). O

2.1.8 Definition. Let L/F be a field extension. Then L/F is called

(i) cyclic, if L/F is Galois and its Galois group G is cyclic,
(ii) Abelian, if L/F' is Galois and its Galois group G is Abelian and
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(iii) of exponent m, if L/F is Galois and the exponent of its Galois group
G divides m, i.e.if 6™ =1 for all ¢ € G. (Note that m is not unique,
i.e.if L/F is of exponent m, then also of exponent [ for each m | [.)

2.1.9 Lemma. Letu € Ap andy € A with p(y) = u, i.e. F(y) = F(p *(u)) =
F(p~Y(A.)). Then we have an injective group homomorphism

Yo Gal(F(y)/F) — pg, o o(y)*xy™ .
In particular, Gal(F(y)/F) is cyclic of exponent |fi,)|.

Proof. First we note that the definition of v, does not depend on the choice
of y, i.e. if y; € A is another element satisfying o(y;) = u, then

p(y) = ply1) = y*y ' € py C Ap
= o(y*yr) =y*ryr
= o(y)*xy  =oly)*y
Moreover,
ply) =ueApr = p(a(y)) = o(py)) =o(u) =u
= p(o(y)) = p(y)
= o(y)xy' € pny
for all o € Gal(F(y)/F), hence we have shown that ¢, is well defined.

1, is injective since from o(y) * y~! = 7(y) * y~! follows o(y) = 7(y) and

therefore o = 7. O

2.1.10 Lemma. If E/F (with E C L) is cyclic of exponent |u,|, then E =
F(y) = F(p~'(v)) with y € Ap and p(y) = u € Ap.

Proof. Let o be a generator of Gal(£/F') and £, an element of yu, with
6ol = lo| = [E: F.
Then Ng/p(&,) = §£E:F] =1 and gives us an element y € Ap with

& =aly)y . (2.1)

We claim
F(y) = E.
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y € Ap implies F(y) C E. L] gives o'(y) = £.y. Therefore and since &,
has order [E : F| we get

o'(y) =y iff i=0 mod [E: F],
hence £ C F(y). Now

a(p(y)  plo(y)  pEy)

o) ey ey P)Th
i.e. o(p(y)) = p(y) and therefore
o(y) =u € Ap
and we are done. O

2.1.11 Theorem.

(i) Let A be a subgroup of Ap with p(Ap) C A C Ap and E := F(p~(A)) C
L. Then E/F is Abelian of exponent |ju,)|.

(ii) Conversely, if E/F is Abelian of exponent |u|, then E = F(p~*(A))
with A = p(Ag) N Ap. In particular we have p(Ar) C A C Ap.

Proof. (i): Since

E=Fp'(A)= ] Fa)=]]Fe " W)

yep~1(A) u€A
we get from a monomorphism

I Yu

Gal(E/F) = ] Gal(F(p~ (w)/F) “—— u2.

u€EA
Therefore Gal(E/F) is Abelian of exponent |z,,|.
(ii): We first show F(p~'(A)) C E by showing p'(A) C Ap. Let b €
e 1(AQ), ie.

pb) € A=p(Ap)NAr = Ja € Ag with p(b) = p(a) € Ar
— be Ag.
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We now want to show £ C F(p~'(A)). Since E/F is Abelian of exponent

| 1|, we have an injection Gal(E/F) < [Lic; #tp- For each i we consider the
homomorphism

v Gal(E/F) = [ ] o = no

(here m; is the i-th projection), define H; := ker(s;) and set E; := Fixy p(H;).
Since (), H; = {id} we know

FixL/F< N H) —E.

Now, for each 0 € G

o€e GalL/F(H EZ> < o€ Galy/p(E;) for all i

and therefore

Galy/p (]_[ E) - ﬂ Galyp (Fixy p(Hy)) = () Hi.

i

This yields
[15 =Fixr (GalL . (]_[ E)) — Fixy/p (ﬂ H) —E.

Each of the extensions E;/F' is Galois and, since

Gal(E,/F) = Gal(E/F )/Gal(E/Ei) - Gal(E/F)/ Hi

)

even cyclic of exponent |u,|. From we get
E; = F(y:) = F(p~" ()
for some y; € Ap, with
P(i) = ui € p(Ag,) NV Ap C p(A) N Ap = A,

i.e.y; € p 1(A). Therefore
E=][E=]]Fw) < Fo " (Q)).

The last statement p(Ar) C

C Ap of (ii) follows from the definition of A
and the fact that o(p(z)) =

A
p(o(z)) = p(x) forall z € Ap and o € G. O
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2.2 Pairings between Groups

2.2.1 Lemma. Let H be a cyclic group of exponent n, i.e. H = Z/qZ for
some q with qin. Then
H = Hom(H,Z/nZ).

Proof. Let a be a generator of H and f € Hom(H,Z/nZ). Then
ord f(a)| ord(a) = ¢

and we are done since the number of elements b of Z/nZ with gb = 0 equals
q- O

2.2.2 Lemma. Let U be a finite Abelian group of exponent n. Then

U = Hom(U,Z/nZ).

Proof. Follows from

U= EBZ/Q’Z with ¢;|n,

=1
Hom (@ 747, Z/nZ) =~ [[Hom(Z/¢:Z,Z/nZ)
i=1 i=1
and 2211 O

Let C, D be Abelian groups of exponent n. A pairing of C' and D in the
additive group Z/nZ is a map
V:={(,):CxD—Z/nZ

which is homomorphic in both arguments. Each one of given homomorphisms
C — Hom(D,Z/nZ) and D — Hom(C,Z/nZ) defines a pairing. On the
other hand each pairing defines the homomorphisms

vy : C — Hom(D,Z/nZ), cw+— {(c, ) (2.2.a)

and
tyo: D — Hom(C,Z/nZ), ¢~ (,d). (2.2.b)
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A pairing is called non-degenerate, if 1y ; and vy o are injective. We denote
by C and D the set of subgroups of C' and D, respectively, and define the
following maps

¢y1:C— D, Ur—V:={deD|(Ud) ={0}} (2.2.¢)
and

pu2:D—C, Vi—U:={ceC|{,V)={0}}. (2.2.d)

2.2.3 Remark. Let U be a subgroup of C'. Then of course the homomor-
phism
qu’l}U : U — Hom(D,Z/nZ)

is also injective. Let h := L\p,l‘U<U) for some u € U be in the image of ¢y 4
From the definition of ¢y ; it then follows

U

¢W71(U) g ker h.

O

2.2.4 Lemma. Let C, D be Abelian groups of exponent n and ¥ := { , ) be
a non-degenerate pairing. Let U be a subgroup of C. Then

(i) U is infinite iff D/py1(U) is infinite.
(ii) If U is finite, then |U| = |D/¢y1(U)|.
(iii) If U is finite, then
U = Hom(D/¢w,(U),Z/nZ) = D/ ¢y ,(U)

and
D/¢y1(U) = Hom(U,Z/nZ) = U.

(The same assertions of course hold for subgroups V' of D and C/¢g2(V).)

Proof. For each subgroup U of C the pairing ¥ induces a pairing
Uy :UxXxD/py1(U) — Z/nZ.

That ¥y is well defined follows from the above definitions and
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Uy is non-degenerate: vy, 1 @ U — Hom(D/¢y1(U),Z/nZ) is injective
because vy is, and vy, 2 1 D/¢py1(U) — Hom(U,Z/nZ) is injective since
the homomorphism

D — Hom(U,Z/nZ), dw (,dy],

has kernel ¢y 1(U). This shows (i). If U is finite, then we also get that

|U| divides }Hom(D/gbq,,l(U),Z/nZ)} )}

}D/QS\I/J(U

and

|D/¢y1(U)| divides |Hom(U,Z/nZ)| U],

1.e.

|U| - }D/QS\I!J(U)}'

This means that for finite U the homomorphisms ¢y, 1 and ¢y, 2 are bijections
and (ii) and (iii) are shown. (The second equality in each equation of (iii)
follows from ZZ2) O

2.2.5 Lemma. Suppose C, D are Abelian groups of exponentn and ¥ := ()
is a non-degenerate pairing of C' and D. For an element d € D we denote by
(d) the subgroup of D generated by d. Assume that for each subgroup V' of D
and each d € D with ¢y 2(V) = ¢puw2(V + (d)) there exists a finite subgroup
Vo CV with ¢pg2(Vo) = ¢pw2(Vo + (d)). Then ¢y 0 puso is the identity.

Proof. From the definitions of the maps ¢y and ¢y we easily see
Gw20 Pu1 0 Puo = Py If we can show that ¢y is injective, then the
result follows.

Let V and V' be subgroups of D with ¢g2(V) = ¢g2(V’). Then also
dwa2(V + V') = ¢ga(V). We now want to show that this last equation
implies

V4+V CV. (2.2.e)
In the same way also V + V' C V' holds, i.e. V = V' and the injectivity of
¢w 2 follows. To verify ([(ZZd) we take d € D with ¢y 2(V) = dua(V + (d))

and show d € V. Our assumption gives us a finite subgroup V of D with
dw2(Vo) = pwa(Vo + (d)). From EZZZA|(ii) applied to subgroups of D we get

Vol = [C/w2(Vo)| = |C/dua(Vo + (d))] = Vo + (d)]

(note that from EZZZ(i) we know that |C)/¢y 2(Vo+ (d))] is finite iff | Vo + (d)|
is finite), i.e.d € Vy C V. I
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2.3 The Kummer Pairing

Now we are ready to prove the main theorem of this chapter. We keep the
notations and definitions of Section EXIl In particular, we have a G-module
A C L™ and a surjective G-homomorphism @ : A — A with finite cyclic
kernel fi,,.

2.3.1 Theorem (Kummer Pairing). Let © the be the set of subgroups A
of A with p(Ar) C A C Ar and € be the set of Abelian extensions E of F
of exponent |u,| (with E C L).

(a) The maps
0:D—¢ Ar— E:=F(p Q)

and

are mutually inverse and are preserving inclusions.
Take an arbitrary A € ® and set E = F(p~'(A)) = O(A).

(b) (i) There is a non-degenerate pairing
Uarp:Gal(E/F) x AJp(Ar) — Lo
(0,0 % p(Ap)) ¥ oly)xy~,

where y € p~1(0).
(ii) Gal(E/F) is finite iff AJp(Ar) is finite.
(iii) If Gal(E/F) is finite this pairing induces isomorphisms
Gal(E/F) = Hom(A/p(Ar), i) = A/ p(Ar)
and
A/p(Ap) = Hom(Gal(E/F), ) = Gal(E/F).
In particular

£ F]=[A/p(AF)|.

Proof. Note that for each A" € © and each subgroup I' of A = N /p(Ap)
there is a unique A € ® with A =T
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We first show (b).
(i): We choose A € D and set E := F(p~1(A)).

VA g ts well defined: Like in the proof of LT we see that the definition of
VA g does not depend on the choice of y, i.e.if y; € A is another element
satisfying p(y;) = 0, then

1

oy)xy " =o(y)*y;

since p, € Ap. Take § € A and y € p~*(8). Then

p(y) =06 € Ap = p(o(y)) = a(p(y)) =0o(d) =0
= p(o(y)) = p(y)
— o(y)*y ' € py,

i.e. the image of U, g is contained in f1,. Suppose now d € p(Ap). Then for
all o € Gal(E/F)

oy)xy =1 = oy) =y
— Yy E Ap
= p(y) =0 € p(Ar),
i.e. Ua g is well defined in the second argument. That it is homomorphic in

both arguments follows from the definition of p. Hence we have shown that
WA g is a well defined pairing.

VA, is non degenerate: Suppose for some o € Gal(E/F) we have vy, ,.1(0) =
1, i.e.0(y) *y~' = 1, hence o(y) = y for all y € p*(A). Then ¢ = idg

and ty, .1 is injective. For the second argument, suppose ty, ,2(0) = 1 for
some 0 € A, i.e. o(y) =y for some y € p~1(d) and all o € Gal(E/F). Then
y € Ap and § € p(Ap), hence vy, , 2 is injective.

(ii) and (iii) follow from (i) and 2224l since
b0s.p(Gal(E/F)) = {8 € & | Wa p(Gal(E/F),6) = {1}}
={0ecA|o(y)=yVoeGa(E/F), ycp (5}
= p(AGIEF) A A
=p(Ar)NA
= p(Ar) =0,

1.e.

A/ bun o1 (Gal(B/F)) = A



32 CHAPTER 2. GENERAL KUMMER THEORY

We now proceed to prove (a).

From ZZT.TTl we know that © and = are well defined. It remains to show that
they are mutually inverse, i.e.

(E ¢} @)(A) = AF(p—l(A)) =A (23&)

and

(©0ZE)(E) = F(p ' (Ag)) = E. (2.3.h)

Let K := F(p '(Ar)). The associated pairing ¥ := W4, ;¢ then induces the
homomorphisms

dwi(H— B : = {3 € Ap [ W(H,3) = {1}}
={0cAp|oly)=yVoecH ycp (5}
— o(AT) ﬂAF>
and
bus(B— H: = {0 € Gal(K/F) | ¥(0, &) = {1}
:{aeGal( F)|oy)=yVyecp (A}
:GK)_I(A)>

between subgroups of Gal(K/F) and subgroups of Ap.

Now we show that the assumptions of ZZH are fulfilled in our situation. Let
A be a subgroup of Ap and a € Ap with ¢y 2(A) = ¢y 2(A + A,), hence

o) = Pw2(D) = du2(A+ D) = Gyriaya,)
and

F(pil(A)) - FIXL/F(GK)_I(A)) — FIXL/F(G —1(A+A ))

F(p ’1(A+A )
Fp™'(A) + 971 (A)
F(p™'(A),p ( a))
F(p™'(A),y)

for somey € p~*(a). Theny € F(p~'(A)). Therefore there exist y1,...,y, €
o Y(A) with y € F(yi,...,y,) and for B := {p(y1),...,0(y.)} we have
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Ap C A, Ag is finite and y € F(pfl(AB)). Hence
FiXL/F(Gp_l(AB)) - F(@A(AB)) = F(@il(AB)ay)
= F(p '(Ar), p~'(Ad))
= Fix;/p(Go-1(ap+0))
and therefore
du2(Ap) = Gorap) = Go1(agra,) = dua(Bp + Ay).
Hence we can use and see that ¢y 1 0 ¢y o is the identity.
Now for each A € © we have
A= $w10 <Z5\1/,2(Z) = <Z5\I/,1(Gp*1(A))
= p(A% @) N Ap
— p(AGal(L/F(pfl(A)))) NAp
= 9(Ap-1a) N Ar
= Br(p-1(a)

hence
A = App-1(a));

which shows (233l).

For each A € ® its image
Pu2(8) = Gora)

33

is closed (under the Krull topology) in Gal(K/F) (see EI.2) and therefore

also

i.e. ¢g,1 0 Galyp is surjective and Fixy /p o ¢y 2 is injective. From ETTIN(ii)
follows that Fix; /F© Qw2 is surjective, hence ¢y ;0 Galj, /F 1s an isomorphism

and so
FiXL/F 0 Py 20 Py,1 0 GalL/F =id.
Now for each F € &

FiXL/F O Py 20 Py O GalL/F<E> = FiXL/F O Py 0 <Z5\1/,1(G31(L/E))

= FiXL/F © ¢\I/,2(A—E)

= Fixy /p(Gp-1(ap)

= F(p~(Ap))
which shows (2.3.H) and finishes the proof of the theorem.
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The following important result is a direct consequence of EET.9, EET.T0 and
E3TI(b) (iii).

2.3.2 Corollary.

(i) Setn :=|py| and let u € Ap andy € A with p(y) = u and u® & p(Ar)
foralld | n, d < n, i.e. A, is cyclic of degree n. If E := F(y) =
F(p~Y(u)) = F(p~Y(A,)), then E/F is cyclic of order n. In particular,
the map

Yo : Gal(F(y)/F) = pg, o—o(y)*y~!

s an isomorphism.
(ii) Conversely, if E/F is cyclic of degree n = |p,|, then E = F(p~'(A,)) =

F(p~Y(u)) = F(y) with p(y) = u € Ar and u® & p(Ar) for all d | n,
d<n.



Chapter 3

Abelian Extensions

We now apply the results of the last chapter to some important cases of
Abelian and especially cyclic extensions.

For the whole chapter let F' be a field of characteristic p and F the
separable closure of F' in some algebraic closure of F'. Then F 1is the
mazimal Galois extension of F. We set G := Gal(F/F).

Section Bl characterizes all Abelian extensions of F' of exponent n, assuming
that F' contains a primitive n-th root of unity and, if p # 0, that n is coprime
to p. In Section we describe all Abelian extensions of exponent p” of F
for the case p # 0.

3.1 Kummer Extensions

We begin this section by stating an important field theoretic result (see for
instance [Jan73, p.213]).

3.1.1 Proposition. Let E/F be a finite cyclic Galois extension of order n.
Then there exists a normal basis for E/F, i.e. an element ¢ of E such that
{o(c) | 0 € Gal(E/F)} is a basis of E/F. c is called a normal basis
element for E/F. In particular, if E/F is cyclic and o a generator of
Gal(E/F), then c,...,0" ¢ is a basis of E over F.

Suppose F' contains the set pi,, of all n—th roots of unity, where the charac-
teristic of F is zero or coprime to n. Then the map (where A := ™)

p:A— A ar—ad"

35
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is a surjective G-homomorphism with cyclic kernel p, = p, € Ap = F* of
order n.

Before we can apply the results of general Kummer theory to the G-module
A and the G-homomorphism @ we first need to show that ZT.0 holds in this
case.

3.1.2 Theorem (Hilbert 90). Let E/F be a finite cyclic extension with
E C F and o a generator of Gal(E/F). Let a € Ap = E*. Then

Np/p(a) =1 < FbeAg=E": a=o(b)-b"

Proof. Because of we only need to show “=-". Let v € FE be a normal
basis element for E/F and set

bi=7+ao(y)+ (ao(a))o*(y) + -+ (ao(a) - 0" *(a)) 0" (7) # 0.

Applying ¢ and multiplying with a gives

Now we can use 23T and see that there is a one-one correspondence between
the so called Kummer extensions of F, i. e. the Abelian extensions £ C F*
of F of exponent n = |u,|, and the subgroups A of F* with p(F*) C A C
F*. These extensions are of the form E = F(p~!(A)), i.e. are obtained by
adjoining all n-th roots of elements of A to F. We finish this section with
two statements about the cyclic case.

3.1.3 Proposition. Let F' be a field which contains the set u, of all n—th
roots of unity, where the characteristic of F' is zero or coprime to n. Then
the following statements are equivalent:

(i) E/F is a cyclic Kummer extension of degree n.

(ii) £ = F(y), where y" = u € F* and u' # 2" for allz € F, | | n and
[ <n.
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(iii) £ = F(y) where y" = u € F* and u # w® for allw € F, d | n and
d>1.

Proof. Z32A O
Each element y € E satisfying one of the equivalent conditions B-I3|(ii) or

(iii) is called a Kummer generator of E/F.

The following proposition helps us to determine the ramification behaviour
of places in Kummer extensions of function fields.

3.1.4 Proposition. Let F'/k be a function field and E/F be a cyclic Kummer
extension of degree n with generatory € E and y" =: u € F*. If P is a place
of F and P’ an extension of P in E, then

e(P'|P) =
TpE
where
rpe = ged(n, vp(u)) > 0.
Proof. [Has34]. O

3.2 Artin-Schreier-Witt Extensions

We now study Abelian extensions of degree p" for a prime p, where p is the
characteristic of the ground field.

Artin-Schreier Extensions

We begin with the special case of cyclic p extensions. These extensions have
been completely investigated by Artin and Schreier in [AS27]. We first state
their characterization here without providing proofs, since we deal with the
more general situation in the next subsection.

Let o : I — F be defined by p(z) i= xP — . Then the following assertions
for a field extension E/F with E C F are equivalent:

(1) E/F is cyclic of degree p.
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(2) E=F(y), ply) =y»—y=uec Fandu#a? —aforall a € F.

An extension, for which (1) or (2) holds, is called an Artin-Schreier exten-
sion. The elements of Gal(E/F) are given by o(y) = y + v, v € F,. Each
y € FE with E = F(y) and p(y') = ¢y —y € F is called an Artin-
Schreier generator of F/F. An element ¢y € FE is an Artin-Schreier
generator iff there exist p € F, C F and ( € F such that y' = uy + ¢
and y? —y = u' = pu+ (P — (), i.e iff y € p71(v/) with v/ € F and
u — pu € p(F) for some p € F,. The minimal polynomial of 3" over F is
TP — T — ' € F[T].

3.2.1 Proposition. Let F/k be a function field of characteristic p > 0, k
perfect and P € Pr a place of F.

(i) For each u € F' we can define a unique

() if there exists an element ¢ := ((P,u) € F with

vp(u+(¢F=¢)) =—=A <0, A#0modp
)\p(u) =
0 if there exists an element ¢ := ((P,u) € F with

vp(u—l— (¢P — C)) > 0.

(Note that if there are ¢ and (o in F with A\ :=vp(u+ (¢Y — 1)) and
Ao i=vp(u+ (¢ — &)) are negative and # 0 mod p, then A\; = X.)

(ii) If E/F is an Artin-Schreier extension and y € E an Artin-Schreier
generator of E/F with p(y) =u € F, then

- P is unramified in E iff \p(u) =0 and
- P is totally ramified in E iff Ap(u) > 0.

Moreover, from (i) follows that, ify' is another Artin-Schreier generator
of E/F with p(y') =u' € F, then

Proof. [Sti93, T11.7.7 and I11.7.8]. O

For later applications it will be important to actually compute Ap(u) from
BZT(i). We describe the procedure for doing this in the following algorithm.
We keep the notations of Proposition B211
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3.2.2 Algorithm. Reduction

Input: PePp,uc F,charFF=p>0.

Output: (:=((P,u) € Fand A = A\p(u) € Z (see BZI(i)) with
either
vp(u+ (¢P —¢)) > 0 (in this case A :=0)
or

vp(u+ (P — () = —A <0, A # 0 mod p.
1. (0, N —wvp(u), x —u
2. while A <0 and A =0 mod p do
3. L —M\p
4 Choose t € F with vp(t) = 1.
5 Choose a € O with

tfp+P:(a+P)p:ap+P (3.2.a)
(In the comments below we show how to find a.)
6. (—(—at
T aweut (=)
8. A — vp(x)
9. end while
10. if A < 0 then
11. A==
12. else
13. A:=0
14. end if

15. return ¢, A

We finish this subsection by showing the correctness of this algorithm: First
we note that x = u + (¢(? — ¢) and ? are non zero. Since

vp(t?) = pup(t) = pl = X = vp(x),
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we have vp(t%) = 0, hence 0 # » +P € Op/P. Then there exists an
a € Op satisfying (B23]), since Op/P is perfect. Moreover, a € O3 since

vp(aP) = vp(Z£) = 0.

Now ([BZa) implies (£ — af) € P, i.e. vp(£ — a?) > 0. This implies

w
vp(z — (at)?) > vp(tP) = A. (3.2.b)
It now remains to show

vp(u+ ((C—at)’ = (C—at))) >vp(u+ (P =) =vp(z) = A, (3.2.)

since we then know that A strictly increases in every step of the while loop,
so the algorithm terminates and does what we want. But since

op(u+ (¢ — at)? — (¢ — at))) = vp(u+ (C" — &) — ((at)? — at))
=vp(z — ((at)? — at)),

BZ3d) follows from vp(at) = vp(t) =1 > Ip = A and (BZD) (note that

during the while loop A and therefore [ are negative).

Artin-Schreier-Witt Extensions

Let now n be a fixed natural number and A be the additive group in the ring
of Witt vectors W,,(F') of length n. A becomes an (additive) G-module by
coordinatewise operation, i. e. id(a) = a, o(a+b) = o(a)+0o(b) and o(7(a)) =

(o7)(a) (a,b € A 0,7 € G). For each intermediate field F' C F C F we get

from (ZI1.d)
Ap=ANE™ = W,(B).

3.2.3 Proposition. The homomorphism

@ Wo(F) — WL(F), (x1,...,2,) — (2], ., 2P) — (z1,...,2,)

rrn

has the following properties:

(i) p is G-linear.
(i) p is surjective.

(iii) The kernel p, of ¢ is finite and cyclic of order p", more precisely we
have
pp = Wi (lp) = Z/p" L.
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Proof. (i) is clear.

(ii). Given (bl, .

Lbn) € Wio(F), we need to show the existence of some
(a1,...,a,) € W,(F)

with

p((al,...,an)) =(b1,...,bn). (3.2.d)

Since the polynomial 7?7 — T — b; € F[T] is separable, there exists a; € F
with Oj{) — a] = bl.

Suppose we find ds, ..., d, with

0((0,da,...,dy)) = (b1,ba, ..., b,) — p((a1,0,...,0))

(3.2.¢)
=: (0,b5,...,b)).

Then

o((ar,da, ..., dn)) = p((0,ds, ....dn)) + p((a1,0,...,0))
= (b1, bo, ..., by)

and we are done. But

0((0,ds, ..., dy)) = (0,b,...,b,) in W,(F)
iff

o((da, ..., dy)) = (by, ..., b)) in W,_(F).

This shows that we can find the vector (a1, ..., a,) € W, (F) satisfying (B2.d))
inductively.

(iii). The first equality follows from

= {z e W,(F) | F(z) — z}
={o=(z1,...,22) € Wo(F) | (¥, ...,28) = (z1,...,2,)}
:{x—(xl,. ,xn)EWn(F)’ EF}

The second is just [CAD(ii). O

Now we want to apply the results of general Kummer theory to the G-module
A and the surjective G-homomorphism @. Again we first need to show that
holds in this case.
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3.2.4 Theorem. Let E/F be a finite cyclic extension with E C F and o a
generator of Gal(E/F). Let a € Agp = W, (F). Then

Trg/p(a) =0 <= FeW,(E): a=o(b)—b.

Proof. Like above, because of we only need to show “=". Choose an
element ¢; € E with Trg/p(c1) =t # 0. For ¢ := (¢1,0,...,0) € W, (E) we
then have

Trg/r(c) = (t,*,...,%x) € (W, (F))"

(see [CZH(i)). Now we set

1
b:=

= W {—aa(c) — <a + U(a))UQ(C) — =

(a +o(a) + -+ a"—Q(a))a"—%@] .

Considering that

o(b) = m |:—0'(CL)0'2(C) — (a(a) + g2(a)>g3(c) B
we get
o(b) — b = ac+ ao(c) + ac?(c) +-- -+ ao"(c) .

TI'E/F(C)
]

As in Section Bl we can apply 23] now and see that there is a one-one
correspondence between the so called Artin-Schreier-Witt extensions of
F, i.e. the Abelian extensions E C F of F of exponent p" = |u,|, and the
subgroups A of W,,(F) with p(W,,(F)) C A C W,(F).

And again, as we are especially interested in the cyclic case, the rest of this
section is devoted to it. We begin with the following

3.2.5 Lemma. Let A be an additive subgroup of Ap = W,,(F') with p(Ap) =
(W, (F)) C A. Then the following assertions are equivalent:

(i) A/p(Wu(F)) = Z/p"Z
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(ii) A=A, for someu = (uq,...,u,) € W,,(F) withu, # o?—a for all a €
F.

Proof. Of course, if A/p(W,(F)) = Z/p"Z, then A = A, for some u =
(wi,...,uy) € Wo(F) and p'u & p(W,(F)) for all 1 < i < n. But, if
u; = af — « for some o € F, then

PN, ) o= O 0,48 ) € p(W,(F))
= 0((0,...,0,a”" ")) € p(W,(F))
since
u’fn_l = (o — )" = (ozpnil)p —

On the other hand, if u; # of — a for all « € F, then, since F' is perfect,
also (uy)?" # BP — 3 for all B € F and all natural numbers i and therefore
pu ¢ p(W,(F)) for all 0 < m < n. O

3.2.6 Theorem. The following statements are equivalent:

(i) E/F is a cyclic Artin-Schreier-Witt extension of degree p".

(i) B = F(y) = Flp~'(u)) = F(p~"(Ay)), where p(y) = u € W,(F),
pud p(Wy(F)) forall1 <i<n,ie A=A,/ p(W,(F)) is cyclic of

order p".

(iii) E = F(y) = F(p'(u) = F(p ' (AL)), where u = (uy,...,u,) €
WL (F) with p(y) = u and uy # o — a for all o € F.

Proof. and O

Let now E/F be a cyclic Artin-Schreier-Witt extension of degree p", i.e. we
have u € W,(F), u; # o —a forall « € F, y = (y1,...,yn) € p ' (u) and
E=F(y1,...,yn). Weset £y :=F, E, := E and E; :== F(yy,...,y;) for
each 1 < i <n. Note that, since F;/F is cyclic, F, Fy, ..., E;_; are the only
intermediate fields of F;/F, and therefore
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3.2.7 Remark. From we get the recursions

Uy = yll) — Y1,
u2:y§_y2_zla

(3.2.0)
Up = yg — Yn — Zn-1,

where z; € F; are polynomial expressions with coefficients in the prime field
of F' given by zy = 0 and

2 3 2 5 i . i
B A O e ek
o p p? Pl
it uwitza)? — g =l
p
Yio1 + Uig + 20" — y}f _ upf (3.2.g)
i—1 1—1
_ ; -

i

 tu)” =yl -l
p'l

Obviously, each extension F;/E; 1 is an Artin-Schreier extension with gen-
erator y;. O]

Choose a generator o of Gal(E/F). Since the map
Yu: Gal(E/F) = pg, 01— 0(y) —y

is an isomorphism (see Z3(i)), we have o(y) = y + a for some generator «
of p, = W,(F,) = Z/p"Z and therefore o'(y) = y + la for each [ € N. In
other words, the elements of Gal(E/F') are given by

o) = (y+la);, 1<i<n, 1<1<p"

Note that
O(y) :y+0./: (y1+007"-7yn+cn—1)

with ¢; € F;, i.e.
oi(y;) = y; + i (1 <5 <i<n), (3.2.h)

where 0; := o|g, is a generator of the Galois group of E;/F and, if j < 1,

then 0|, = 0;. Now BZI) and (BZI) give
J

Oic1((zic1 +wi) — (zimy +u) =y — ¢
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From
crﬁil(ym) = Y1t +oale) +- + Uz{l He)
= Yip1 + i+ oi(c) + -+ 0y 4 )
= Yiy1 + Trg, r(c)

it follows that Trg, /p(c;) # 0, since otherwise o/}
H—l
p

Each ¢/ = (vf,...,y,) € o ' (W,(F)) with E := E,, = F(y},...,y,) is called
an Artin-Schreier-Witt generator of £//F. If y’ is an Artin-Schreier-Witt
generator of E/F, then, for each 1 <i <n, (y1,...,y;) is an Artin-Schreier-
Witt generator of E;/F.

i1 = 1, contradicting ord o1 =

3.2.8 Proposition. Let E/F be a cyclic Artin-Schreier-Witt extension of
degree p", i. e. we have u € Wy, (F), w1 # o —aVa € F, y = (y1,...,yn) €
o t(u) and E=F(y) = F(y1,...,yn). Then, fory € W,(F), the following

assertions are equivalent:

(1) v is an Artin-Schreier-Witt generator of E/F.

(i) v € p (') for some v € W, (F) and v’ — Mu € (W, (F)) for some
Ne (Z/pz).

(ili) ¥ = Ay + ¢ for some X € (Z/p"Z) and ( € Wy (F).

Proof. (i)<(ii):

Fly)=F@) < Flo ' (A)) =F(p~'(Aw))
E A, = Ay
— A,=Ay,
<

3N € (Z/p"Z) with v/ — M € p(W,(F)).

(il)=-(iii): Let

v =Xu mod p(W,(F))
for some A € (Z/p"Z), i.e. u' = Au+ p(6) for some 6 € W,(F). y' € p~'(u')
implies ¢ = Ay + 0 + 0" with ¢’ € ker p C W,,(F).
(il)=(il): If ' = Ay + ¢ for some X\ € (Z/p"Z) and ¢ € W,(F), then
p(y) = du+ p(¢) = v’ € W, (F) and u — A"/ = p(¢) € p(W,(F)). O
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Chapter 4

Computing the Generators

In this chapter we present the main results of this thesis. We give the proce-
dures and algorithms to compute a finite set Q of Og-generators of Og(E),
where F'/k is a function field with finite (in particular perfect) constant field
k, 0 #S G Ppand F is a cyclic Kummer (BEZ) or Artin-Schreier-Witt ex-
tension ([E3]) of F. This is done by first splitting S in finitely many disjoint
subsets and then computing for each P in each of these sets a set 2p of
S-integral generators of Op(FE) over Op. Section Bl provides some auxiliary
tools for this, and Theorem BTl assures that the set, which
consists of the union of all Qp, is the sought-after set 2 of Os-generators
of Os(FE).  is finite since the sets 2p are equal for all but finitely many
Pes.

4.1 Preliminaries

The following fundamental theorem gives us one of the basic tools for our
purpose of computing the generators of all S-integral elements of F.

4.1.1 Theorem. Let E be an extension of a function field F/k and ) # S &
Pr. Suppose there is a subset Q of Os(E) which consists of Op-generators
of Op(E) for each P € S, i.e.

Op(E)=0p[Q] VP €S.
Then ) is a set of generators of Os(E) over Og, 1i. e.
Os(E) = Os[9Q].

47
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Proof. For each P € § we have the following picture:

Here, (Os)prog is the localization of the ring Og at its prime ideal P N Og
and (Os[9]) , o, and (0s(E)), o, are the localizations of the Os-modules
Os[Q?] and Os(E), respectively. Since (Os)pros = Op (see [LZF(v)), these
are modules over Op (see Section [1). Equality (1) and (2) follow from
TTAG) (for (2), take any set of generators Q D Q of Og(E) over Og). (3)
follows from (1) and (2).

This means that
(0s(E)), = (0s[9),

for all maximal ideals p of Og, and therefore
Os(F) = 0Os

(see Proposition [LT3). O

—

Y

The next two results will help us to compute for a place P of a function field
F' alocal integral basis for some field extension of F'.

4.1.2 Proposition. Suppose FF C D C E is a tower of extensions of a
function field F', P € Pr a place and Py, ..., P, are all the places of D above
P. Let Q C Op(D) with

Op(D) = Op[Y

and Qy, ..., 8, be subsets of Op(E) with

OPz(E> = OP¢ [Ql]



4.1. PRELIMINARIES 49

forall1 <i<r. Then

OP(E) - OP[Qaﬁla . '797’]'

Proof. With § :={P,..., P.} we get from Tl
Os(E) = Os[4, ..., Q]

Since Os = (Op, = Op(D) = Op[Q)], the result follows. O

4.1.3 Corollary. Let £y C Fy C --- C E, be a tower of field extensions of a
function field Ey and Py be a place of Ey. Suppose for each 1 < i < n there
is a set A; C Op(E;) such that

OPi—l (EZ) = OPi—l [AZ]
for each place P;_1 of E;_1 over Py. Then

Op,(E,) = Op[Ay, ..., Ay

Proof. Repeated application of T2, with F' = Ey, D = E;, E = FE, in the
first step, F' = Ey, D = E5, = FEj3 in the second and so on. O

4.1.4 Remark. Let F' be a function field over the rational function field
k(z) and ) # S G Pp. Define s := {p € Py(,y | 3P € S with P|p} and
S :={P € Pp | P|p for some p € s}. Then for each a € F there exists a

representation a = r;f;((;)) satisfying

(1) num(a) = awy + -+ - + apwny, € Og (here wy, ..., wy, is a basis of Og
over 0;),

(2) den(a) € O, and
(3) ged(den(a), ay,...,a,) =1 (note that O is a unique factorization do-

main).

The following proposition provides us with a tool for finding for a given
element of a function field another element such that their product is integral
for a given set of places.
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4.1.5 Proposition. Let E/F be a function field extension, 0 # € E and

X(8,E/F) (T) = Z ;T
i=0
the minimal polynomial of 3 over F. Let ) # S G Pp. If we define

93 ::lcm{den(%) ’0§i<j§m7 O‘i’aj%o}’
J

then
555 S OS(E) (4.1.&)

Suppose (3 is integral for some P € §. Using Strong Approximation we choose
v € F with

vp(y) = —vp(dp) and
vo(y) >0 forall @ € S\ {P}.

Then also
5557 S OS(E) (41b)

Proof. From the Newton polygon of X (s, p/F) We know that there exist 0 <
r < s < m such that 0 # «,, as and

) vp(ozri : ip(ozs)

vp(8) = e(P'|P

(see for instance [Cas86l, Chapter 6.3]). Therefore

S

_ e(P'|P) ( op (Z—) (s — T)UP(55))

vpr(355) = e(P'|P) <S i —up <%) + UP(5/3))

S—rT s
e( ,‘ ) T —

= I go=r) >
S r vp . 8 0

for each P € § and P’ € Pg with P'|P. This proves (ELal). The proof of
#.1D) is now trivial. 0O
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4.2 Kummer Extensions

Let F'/k be a function field which contains a primitive n-th root of unity,
n > 1 and n relative prime to the characteristic p of F'. Suppose E/F is a
cyclic Kummer extension of F' of degree n, i.e. E = F(y) where

y"=u€ Fandu#wforalwe F,d|nandd> 1. (4.2.a)

Let ) # S G Pp. The task of this section is to find a set of Os(F')-generators
of Os(FE). Let P € S and P’ € Py with P'|P. We recall from BT that

ep(P) = e(P|P) = ——, (4.2.b)

TPE

where
rpe = ged(n,vp(u)) > 0.

Let us first consider the unramified places. We notice

P unramified in E/F <= e(P'|P)=1 VP'|P
<~ TpE=T"n
<= vp(u) =0 mod n.

We define

A:={P €S| P unramified in E/F}
={P eS| jpn=:vp(u) =0modn}

and

Ay :={P e A|vp(u) =0 and vp(d,) = 0}
(0, was defined in LTH). Then

A\ Ay ={P e A|vp(u) # 0 or vp(d,) > 0}. (4.2.c)
4.2.1 Proposition (S-integral Op-generators of Op(E) for P € A).

(i) yo, € Os(E).
(i) For all P € Ay we have

Op(E) = Oplyd,].
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Using Strong Approximation we choose T € F with

vp(T) = —(jp +vp(dy)) for all P € A\ Ay and
vo(T) >0 for all Q@ € S\ {A\ Ay}

Then

(ili) yo,7 € Os(E)
(iv) Op(E) = Oplyd,t| for all P € A\ Ay.

Proof. (i) follows from

We have
X(y,£/p)(T) =T" —u € Op[T] for all P € A,. (4.2.d)

From y™ = u and vp(u) = 0 follows vp:(y) = 0 and therefore
/ o n—1\ __ _
vpr (X(%E/F) (v)) =vp(n-y" ') =(n—1vp(y) =0 (4.2.e)
for all P’ € Py above P. ([L2.dl) and [fZd) together with [LZT3(i) give
OP(E) = Op[y] for all P € AO-

Since vp(d,) = 0 for all P € A, this shows (ii).

Setting y := yd,T we get
gt =ud, " = 1U (4.2.1)

and
a#w forallw e F, d|n, d>1. (4.2.g)

(Suppose not, i.e. & = w?. Then

d

u = = s s
n-+n 5 n
oyT Oyl T

contradicting (EZ&l).) This means that ¢ is a Kummer generator of F/F
with minimal polynomial

X(g,E/F)(T) =T" - .
and the definition of 7 yields

v () >0 (4.2.h)
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for all Q"Q, Q € S\ {A\ Ap}. From

vp (ﬂ) = vUp ((g)n)
=vr(y") +op(9)) +vr(7")

= vp(u) + nvp(d,) + nup(r) (4.2.1)
= jpn +nvp(dy) — njp — nvp(dy)
=0

follows

for all P’ € Pr above P, P € A\ Ap. @21) and ([{Z]) now give (iii).

For (iv) we note that from ([Z1)) we get x(j p/r) (1) € Op[T] and that
EZ]) yields

o (X' (@) = vpr(n - ") = (n = Lvp() = 0
for all P’ € Py above P, P € A\ A, and therefore (by [CZT3(i))
Op(E) = Oply]
for all P € A\ A,. O

Let us now consider the ramified places, i.e. the set

B:=S\A={P S |vp(u) #0modn}

We define
By:={Pe€B|eg(P)=n}
={P € B|rpg=ged(n,vp(u)) =1} (4.2.k)
and
By:={PeB|1<eg(P)<n}=DB\B. (4.2.1)

If P € By, then P is totally ramified in F/F and there exist integers sp and
lp with {p > 0 such that

nsp + lpvp(u) = 1. (4.2.m)
Using Strong Approximation we choose vp € F' satisfying

vp(yp) = sp — lpvp(d,) and

vo(yp) >0 for all Q € S\ {P}. (4.2.n)
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Since Ip > 0 we get with

vy (7p(yd,)'") >0 (4.2.0)
for all Q'|Q, @ € S\ {P}. Moreover, if P’ is the place of E above P, then
vpr ('YP(y(Sy)lP) = e(P'|P)vp(vp) + lpvp (y) + e(P'|P)lpup(dy)
=NsSp — nlpUp<5y) + ZPUP<U) + nlpUp<5y)

=nsp + lpvp(u)
=1.

([EZ4), @EZD) and [CZTA(ii) shows

(4.2.p)

4.2.2 Proposition (S-integral Op-generators of Op(E) for P € By).
If P € B has ramification index n = [E : F| (which is the case iff rpp =

ged(n,vp(u)) = 1) and vyp is as in ([EZ1), then

(i) vp(yd,)'r € Os(E) and
(ii) Op(E) = Oplyp(yd,)'™"]. O

Suppose now P € B,, i.e. P is ramified in F with ramification index e :=
ep(P), where 1 < e < n. Hence

n
ri=rpp == ged(n, vp(u)). (4.2.q)

Consider the intermediate field E, := F(y®) of E/F and let P,1,..., P, be
all the places of E,. above P. Then E,/F is a Kummer extension of degree
r with Kummer generator ¢ and defining polynomial 7" — u and E/FE, is
a Kummer extension of degree e with Kummer generator y and defining
polynomial 7 — y°. From ([f2.q) we get

rp e, = ged(r, vp(u)) = ged(n, vp(u)) =1,

hence (see (L2.1))

ep, (P) = TPTE = 1. (4.2.1)

This implies
e=ep(P)=c¢eg. (P) ep(P.;)=er(Pr) (4.2.8)

for each 1 < i < s. This means that F, is the inertia field of P in E, i.e. P is
unramified in E,/F and each P, ; is totally ramified in F/E,. We summarize
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the above in the following diagram:

" \ / ep,(P) =e(P.;|P)=1

(Here, Pgg,...,Pg are all the places of E above P and Pg;|P,;.) The
unramified case ([{.Z1]) was dealt with in Proposition EEZ1l Applied to our
situation this means that we take jp € Z with

'UP(U) = jPT7
use Strong Approximation to choose 7p € I with

UP(TP> = _(jP +UP(5ye)) and
vo(Tp) > 0 for all Q € S\ {P}

and set
ap =Y 0yeTp. (4.2.1)

E2Z Tl then yields
ap € Og(E,) and Op(E,) = Oplap]. (4.2.u)

On the other hand, the case ([E=Zd) of total ramification was discussed in
Proposition For all 1 <i < s we have

vpp(Y") = vpp (1) = evp(u)

= Upgy, (yr) = UP(U)

UVplU
= UPE,i(y): Pﬁ)
e e evplU
= Upy,(Y°) = e(Pri|Pri)ve,, (Y°) = 1;( )
v u
— oy, ) = 2.

Moreover we know
1= rp.,,E = ng(e7 vPr,i(ye>>'
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Hence there exist integers sp and l[p with [p > 0 such that

oelu) _ g

esp+lp

We use Strong Approximation to find vp € F satisfying

vp(yp) = sp — lpvp(d,) and
vo(yp) > 0 for all Q € S\ {P}

and define

Bp = vp(ys,)"". (4.2.v)

Now, since [p > 0 we get with LT3

UQ/ (ﬁp) Z 0 (42W)

for all Q'|Q, @ € S\ {P}. Moreover, since P is unramified in E,/F we get
(similar to ([E2.1)))

VpPg ; (ﬁP) =1 (4.2.){)

for all 1 <14 <'s. From ([(EZw), E2ZX) and [CZT3(ii) then follows

ﬁP € OS(E) and OPr,i(E) = OPr,i[/QP] (42}7)

for all 1 <i < s. Putting together (E211) and (Z:Z3y]) and using we get

4.2.3 Proposition (S-integral Op-generators of Op(FE) for P € B,).
Let P be in By. With the notations just defined we get

(i) ap,Bp € Os(FE) and

(11) OP(E) == Op[ap,ﬁp]. U
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We are now able to give an algorithm which computes for each Kummer
extension E of a function field F' and each () # S G Pr a set of Os-generators
of 05<E):

4.2.4 Algorithm.

Input: A Kummer extension E = F(y)/F and ) # S G Pp.
Output: A finite set Q of Og-generators of Og(FE).

1. Compute the sets A\ Ay, By and By (see ([{LZd), (L2XK) and [E2T)).

2. Compute Q4, = {yd,}, where J, is as in ET.5
3. Compute 7 (see EZT)) and set Qa\ 4, = {yd,7}.

4. For each P € B; compute sp and [p and «yp satisfying ([EEZml) and
(EZ1), respectively and set

Qp, = {7p(yd,)"" | P € B,}.

5. For each P € By compute ap and f[p as in ([LZI) and ([E23), respec-
tively and set

Qp, == {ap,Bp | P € By}

6. return € := Q4 U Qg 4, UQp, UQp,.

The correctness of this algorithm follows from & = Ag U A\ Ag U By U By
and Proposition [LTIl The set € is finite and contained in Os(F) since this
is true for each of the sets Q4,, Qa\4,, 25, and Qp, (note that A\ Ay, B,
and By are finite).
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4.3 Artin-Schreier-Witt Extensions

For this entire section we consider the following situation:

Let E/F be a cyclic Artin-Schreier-Witt extension of degree p™,
i. e. we haveu € W, (F), uy # o —a foralla € F,y = (y1,...,Yn) €
o Yu) and E = F(yi,...,yn). We set Ey := F, E, := E and
E; .= F(y1,...,y;) = F(y;) for each for each 1 <i <n.

Let 0 # S ; Pr. Now we have all the necessary tools to compute a set of
generators of Og(F) over Os. We will give a brief survey of this section. Let
P € Pr. We begin by defining a vector Ap = (Apy,...,Ap,) € Z™ and a
vector (p = ((P) € W,(F) which will give us important information about
the ramification behaviour of P in E. We use these vectors to split S into
finitely many disjoint subsets. Then we compute for each P in each of these
sets a set of S-integral generators of Op(F) over Op. As mentioned above,
Theorem ELTT] then guarantees that the set €2, which consists of all these
generators and will turn out to be finite, has the desired properties.

We define the vector Ap = (Aps,...,Ap,) € Z™ in the following way: Set
ul” := u. Using algorithm we choose an element (; := ((P,u;) € F
which determines Ap(u;) (see BZI(i)), that is,

either vp(ur + (¢ = G1)) = —Ap(w)
or vp (u1 + (¢F — Cl)) > 0.
We set Apy := Ap(u1), (Cp)1 := (1 and
ull = 0 4 p(({l, 0,..., 0))

If Ap; > 0, then Ap; := 0, (Cp); := 0 and ull := ulY for all 1 < j < n. Else
we choose an element ¢, := ¢ (P, (ul'l);) € F which determines Ap ((ul"),)
(see BZZTN(1)), i.e.
either  vp((u)2+(F = ¢2)) = =Ap ((ul),)
or  op((u)+ (¢ =) >0

and set Aps = Ap ((u“])g) and (Cp)2 := (2. Now we set recursively as long
as Apﬂ',l =0
where (!l € W, (F) is given by

(¢, = {

0 else.
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Here ¢; := ¢ (P, (ul™1);) € F is an element which determines Ap ((uf~1),),
that is,

= —Ap ((uf=1);) or
>0

vp (W) + (¢ = ) = vp((u);) {

and set '
Ap,i = )\P ((u[lfl])z) and (Cp)l = Cl (43&)

If we reach an 1 <r <n with Ap, > 0, then we stop this procedure and set
Ap; =0, (Cp); := 0 and ub! == ul for all r < j < n. (4.3.b)

Note that, if 1 < [ < j < n, then the first I coordinates of u¥ and ul/! are
equal and

ul = (@)1 + ((CP)T = (€P)1)s o @)+ ((CP)h = (CP)n)) -

Moreover, since
(), = @)+ (= @)
we have
Ap ((u[l—ﬂ)l) = \p ((u[l})l) =...=\p ((u[j})l) )

The new Artin-Schreier-Witt generator of E/F which is obtained by the
above procedure is

yp =y +Cp (4.3.c)
with
up = p(yp) = ul"l = u+ o (Cp) (4.3.d)
i.e. Ej = Ejfl((’yp)]) and

(?JP)? — (yp)j = (up); + zpj-1,

where zp,;_1 € E;_; is as in (B:2.g).

4.3.1 Remark (Computing the inertia field of a place P € Pr). We

denote by P; an arbitrary extension of P to E;. Since the E; (0 < j < n) are

the only subfields of F,,, we know from [L26 that the inertia field of P, over

P is E; for some 0 < t < n, i.e. P is unramified in E,/F and F; is totally

ramified in £;/E; for each t < j <1 <n. We claim that

. {n | if Ap;foralll1 <i<n (4.3.0)
min{l <j—1<n|Ap;—; >0} else.
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From BZTI we know that FP;_; 1is unramified in FE;/E;_; iff
Ap,_, ((up); + zpj—1) = 0. Therefore we have established (EE3.d) if we show
that

Apj = Ap_,((up); +2zpj-1) for 1<j<t+1. (4.3.1)

Since Ap; = -+ = Ap; = 0 and zp,_; is a polynomial expression in (yp);,
(up); and zp;_; (1 <1 < j— 1) with coeflicients in the prime field of F' (see
remark B2Z7), we have

vp,_ (2pj-1) >0, 1<j<t+1 (4.3.g)
For 1 < j <t we have Ap; =0 and vp((up);) > 0. Therefore
UPj,l«UP)j -+ ZPJ;l) >0 (43h)

and thus Ap,_, ((up); + zp;j-1) = 0. It follows that P is unramified in E;/FE.

On the other hand, if t <nand j =t+1, i.e. vp((up)iy1) = —Apry1 <0,
then strict triangularity and yield

vp, ((up)is1 + ZP,t) = vp,((up)iy1) = vp((up)is1) (4.3.1)

and we have proved (£31) and hence ([E3.d). O

For later reference we note the following: since P, y1|F; is totally ramified and
P,|P is unramified we have

0>p-ovp ((Up)t+1 + ZP,t) = Upy ((Up)t+1 + ZP,t)
> min{UPt-H ((yP)f-H) y UP 11 ((yP)t+1) }
p-vp, ((yP)tJrl)a

i.e. (together with (E3))
~Apir1 = vp((up)ir1) = vp ((up)es +2p0) = vpy ((YP)it1).  (4.34)
Note that all the above equations do not depend on the choice of the place

Pjover Pforall1<j<t-+1.

4.3.2 Remark. We keep the notation of the above remark. In particular,
FE, is the inertia field of P in E. For each 1 < 7 < ¢ consider the minimal
polynomial

X((yP)iin/Ei—1)<T> =T"-T — ((uP)i + ZP,ze1)
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of (yp); € E; over E;_; (where zp;_1 € E;_; is as in (B.2.g), see remark B22ZT]).
For each P,_; € Pg, , with P;_;1|P we know from (E.3.1)
X((yp)i, Bi/Ei—1) (T) S OPi—l [T]

This implies that for each 1 <7 <t the element (yp); is integral over P. [

We now split S into subsets. We define

A={PeS|vp(u)>0forall<i<n},

B:= B, = {PGS\A ’ Ap; =0 for all 1 Sign} (4.3.k)
and for 1 <j<n

Bj = {PES ’AP,Z‘:OfOI' 1 <1<y and Ap,j >0} (431)

Note that all the above sets are pairwise disjoint and that their union equals
S. From remark 3Tl we know that AU B equals the set of places of S which
are unramified in £/F and that, if P € B;, then E;_; is the inertia field of
P, that is, P is unramified in E;_;/F and totally ramified in E;/E;_; for
each 7 <[ < n. We have

n+1
j=1
We proceed by computing By, ..., B,.1. For this purpose we define for 1 <
1 <n
A;:={P e S |vp(u) <0and vp(u;) >0 for all 1 < j < i}
={PeS|vp(u;) <0and P ¢ A for all 1 < j < i}.

These sets are also pairwise disjoint and their union equals A. Moreover,
they are given explicitly. Therefore our task of computing By, ..., B,y can
be solved by finding » with P € B, for each P € A;, 1 <1 < n. This can
be done as follows using the definitions and procedures described in the first
part of this section. If P € A;, then obviously

Ap; =0 forall 1 <j <l

All we have to do is to compute Ap;, Ap;i1,... until we find » > [ with
Ap, > 0 (because this means P € B,). We summarize this in the following
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4.3.3 Algorithm.

Input: Pec A forsome 1<[<n.

Output: (p and Ap as defined in ([E3a) and [E3D) and r with
P e B,.

1. m—1I1-1, A0

2. for i in [1..n] do

3. (Cp)i 0, Ap; 0

4. end for

5. while A =0 and m <n do

6. m<«—m+1

7. ¢, A < Reduction (P, u,) (see algorithm B.22)
8. (CP)m — C Ap; — A

9. u—u+ o(Z), where Z € W, (F) is given by

Zj:{c j=m

0 else

10. end while

11. if m=nand A =0 do
12. r<«—m+1

13. else do

14. r—m

15. end if

16. return (p, Ap, r.
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For each P we now also can compute yp and up as in (3.d) and ([@3.dl). Of
course, yp =y and up = u for all P € A.

Let P € S. In order to compute generators of Op(E) we first choose 1 <t <
n such that E; is the inertia field of P, i.e.

L n PeAUB
“)lr—1 PeB,.

We recall from remark that for each 1 <14 <t and each P,_; € Ppg,_,
with P;_1|P we have

X((yp)i,Ei/Eiﬂ) (T) = Tp — T — ((UP)z + Zpyi_l) - Opi_l [T] (43m)

Moreover,

Up; (X,((yp)i,Ei/Ei_l) ((yp)i)) =0 (4.3.n)

for all P, € Pg, with P;|P;_;. From ([E3m), (E30) and [CZT3(i) follows

OP¢71 (El> = OP¢,1 [(yP%} . (430)

With then follows

Op(Et) = Op [(yp)l, ceey (yp)t] . (43p)

We are done if ¢t = n. Otherwise we still have to consider the ramified part.
Let P;1,..., P, be all the places of E; and P, 1,..., P,, be all the places of
E, above P with P, ;|P;;. For each 1 <i <r we choose a prime element 7;
for P, ;. From (E3-p), CZT3(ii) and then follows

Op(En) = Op [(yp)l, e (yp)t,ﬂ'l, Ce ,ﬂ'r].

This set of Op-generators of Op(F) is in general of course not a subset of
Os. In the following propositions we will show how to compute S-integral
generators of Op(E) over Op successively for the places P in the sets A,
By, ..., Bni1.
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Using the definition in Proposition we define the following subset of A:

A :={P e A|vp(d,) >0 for some 1 <i<n}. (4.3.q)

i

4.3.4 Proposition (S-integral Op-generators of Op(E) for P € A).

Set
QA\A’ = {yzay, | 1 S 1 S 7’L}

Then
(i) vidy, € Os(E) for each 1 < i <n.
(i) For all P € A\ A" we have

OP(E) = Op [QA\A/} .

Let now P € A’. For each 1 < i < n we use Strong Approzimation to find
vpi € F with

vp(ypi) = —vp(dy,) and
vo(vpa) 2 0 for all @ € S\ {P}.

Define
Qp = {yidy,vpi | 1 <i<n}. (4.3.r)

Then
(ili) yidy,vpi € Os(E) for each 1 <1i <mn.
(IV) OP(E) = Op [QP] .

Proof. (i) and (iii) follow from ELT.H

Let P e A\ A'. For all 1 <1i <n we have vp(d,,) = 0, hence J,, is a unit in
Op. Therefore (with ([E3d))

OP¢71 (El> = OP¢71 [yl] = OPiﬂ [yiéyi]

for each place P;_; of E;_1 over P. (ii) then follows from EET3

If P e A, then vp(dy,vp;) = 0 for all 1 <14 < n, hence d,,7p,; is a unit in Op.
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Like above, with (3.d) follows

OP,-_l(Ei) = OP,-_l [?/J = OPi_l [yifsyﬁp,z‘]

for all 1 < ¢ < n and each place P,_; of E;_; over P. Again, gives
(iv). O

4.3.5 Proposition (S-integral Op-generators of Op(E) for P € B).
Let P € B. For each 1 < i < n we use Strong Approzimation to select
vpi € F with

vp (fYPvi) = ~vp (5(3/P)¢) and

vo(vpi) = 0 for all Q € S\ {P}.

Define

QP = {(yP)z 5(yp)i’7P,i | 1 S Z S n} (438)
Then

(i) (yp)idwpyvri € Os(E) for each 1 <i<n.
(i) Op(E,) = Op[Qp].

Proof. (i) follows from ELT.H.

Since vpifl(é(yp)/ypi) = 0 for each 1 < ¢ < n and each place P,_; of E;_;
over P, (ii) follows with the same argumentation as in the proof of 34 from
4. 1ol U

4.3.6 Proposition (S-integral Op-generators of Op(E) for P € B,).
Let P € B,, andt:=n —1, i.e. E} is the inertia field of P in E,. For each
1 <@ <t we use Strong Approzimation to find yp; € F with

0p (1r) = ~vp (B, and
vo(1ps) = 0 for all Q € S\ {P}.

Since for all P, € Pp, with P,|P we have vp, ((yp)n) = —Ap, Z 0 mod p
(this was shown in [3])), there exist | and s € 7Z=° such that
s-p—1-Ap, =1. We choose 0p,, € F' with

vp (Gp,n) =s—1[-vp (5(yp)n) and

vo(Opn) >0 for allQ € S\ {P}

and define
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1<i< t} U {ep,n((yp)na(w)n)l}. (4.3.1)

Op = {(yp)ﬁ(yp)ﬁm

Then
(i) (yp)idpynvri € Os(E) for each 1 < i < t.

(ii) QPW((yP)nd(yp)n)l S OS(E)

(iii) Op(E,) = Op[Qp].

Proof. (i) follows from
vp(O(yp)vpi) = 0 for each 1 < i < t. Hence &(yp),7p, is a unit in Op. With

E3) follows
OP¢71 (El> = OP¢71 [(yP%} = OP¢71 [(yp)ié(yP)i7P7i] (4'3'11)
for all 1 <14 <t and each place P;,_; of E; | over P.
Since [ > 0,
l
UQ/ (9P7n(<yp)n5(yP)n) ) Z O

for all places Q' of E over @ with @ € S\ {P} follows from and the
definition of 0p,,. Now

vp, <0P,n ((yP)n(;(yp)n)l)
= Up(ep,n) . €(Pn‘P) +1- ’Upn((yp)n) +1- Up(é(yp)n) . €(Pn‘P)
=sp—1-vp(Oyp)) =1 Apn+1-0p(0yp).) P
=S5'p— [ AP,n
= 1,

for all places P, of E over P. This gives (ii) and
!
OPt(En) = OPt [QP,n((yP)né(yp)n) :| (43V)

for all P, € Pg, with P,|P. (iii) follows with LT3 from ([E3a) and ({E35). O
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We are now left with the task to find a set of generators for each P € B,
1 <r<mn Sett:=r—1,ie FE; the inertia field of P in E,. For each
1 <4 <t we use Strong Approximation to find vp; € F' with

vp(vp:) = —vr(dp)) and
vo(ypi) > 0 for all Q € S\ {P}.

We have

Y — Yy = Up + 21 € B,

Let P;.,..., P, be all the places of E, P,_11,...,P,—1, be all the places of
E,_1and P,,...,P,, be all the places of E, above P with P, ;|P,_1;|F;;.
Since each P,_; ; is totally ramified in the Artin-Schreier extension E, /E, 4
we know from [E.2T] that there exists an element pp; of E,,_; such that

0Py, (Un + zn1 + (P — ppy)) = —mp; <0 (4.3.w)
with mp; # 0 mod p. Therefore we can choose Ip; and sp; € 729 such that
SPJ . pnit — ZPJ . mpJ = 1.

(Note that p"~* = e(P, ;| P;) = e(P, ;| P).) Now y,+pp; is an Artin-Schreier
generator of E, /E, 1,

(Yn + pPg)" = (Yn + PPj) = Yh — Yn+ Pp; — PPj = Un+ 201+ (0 — PPj)
and
1
Up, ; (Yn + ppj) = ]—9 " UP, (Un + 2n1+ (p%,j - PP,j)) = —mp;.
Select 0p,, ; € F' with

vp(Opns) = 5pj — lpj - 0P (O(yutpp,)) and

vo(lpy,;) >0foral QeS, Q#P.
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4.3.7 Proposition (S-integral Op-generators of Op(F) for P € B,,
1 <r < n). Suppose we are in the situation just described. We set

Qp 3:{(yP)i5(yp)ﬁP,i 1<i< t} U

(4.3.x)

lp; .
{Qﬂw‘((yn +pPi)0yutory) | 1S TS r}.

Then
(i) (yp)idp)vri € Os(E) for each 1 <1 < t.

() Opni (Yn + PP3)0(msopy) ™ € Os(E) for all 1 < j <.

(iii) Op(E,) = Op[Qp].
Proof. Like before, (i) and

Vo <9P,n,j((yn + pP,j)5(yn+pp,j))lP’j> >0
for all places ' of F over Q with Q € S\ {P} and all 1 < j < r follow from
and the definition of yp; and p,, ;, respectively . Now
vp, <<9p,n,j ((yn + /)P,j)5(yn+pp,j))lp’j)
= 0p(0pn;) - €(PuglP) +lpj - vp,, (o + ppj) +1pj - 0P (Oytony) - €(Pusl P)
= spg0" " = 1pg P (Ogtpr) P = ey mpg U vp (O tony) P

n—t
=s-p" " —lpj-mp
—1

for all 1 < j <r. This gives (ii) and
l .
OPt,j (En) - OPM’ |:0P,n,j((yn + pP,j)(S(ynJrPP,j)) P’]:| (43y)

for all 1 < 5 <r. Since vp (5(yp)ﬂp,i) = 0 for each 1 <7 <t and each place
P,y of E;_y over P, 0(y,),vp; is a unit in Op and therefore (by (E3d)) we
have

OP¢71 (El> = OPiﬂ [(yP>l} = OP¢71 [(yp)ié(yP)¢7P,i}' (4'3'Z>
(iii) now follows with and from ([32) and [E3Y). O

Like for Kummer extensions in the last section, we now summarize the above
results and give an algorithm which computes for each Artin-Schreier-Witt
extension E of a function field F' and each () # S G Pp a set of Os-generators
of OS(E ):
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4.3.8 Algorithm.

Input:  An Artin-Schreier-Witt extension F = F(y)/F and
04SSPy
Output: A set Q of Og-generators of Og(E).

1. Compute the set A" (see ([E3q)).

2. Compute the sets By, ..., By (see (L3K) and @3.])) using algorithm
4.0.0

3. Compute 4\ 4/ as in Proposition B34
4. For each P € A’ compute Qp (see (E31)) and set

QB = U Qp.
6. For each 1 < ¢ < n and each P € B; compute Qp (see ([E3) and
[E3X)) and set
QBz’ = U QP.

PEBi

7. return Q.= QA\A/UQA/UQBUQBlU"'UQBn.

The correctness of this algorithm follows from
S=A\AUAUBUBU---UB,

and Theorem ET.Tl We have shown that the sets Q\ 4/, 4/, Qp and Qp,,
1 < i < n, are contained in Og(F). They are finite since A’, B and B,
1 <i <n, are finite. Therefore Q2 is a finite subset of Og(E).
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Chapter 5

Examples

In this final chapter we examine a list of examples and compare our method
to compute a maximal order of a Kummer or Artin-Schreier-Witt extension
E of a global function field F' with the Round 2 based method.

In most of the examples we compute the finite maximal order O2 of E, in
one group of examples the infinite maximal order Oz°. We list the examples
in single consecutively numbered tables. We now describe the table entries
whose meaning is not obvious.

T1 is the time our algorithm needed for the computation. With the imple-
mentation we used the actual calculation of the generators (which is done
using algorithm L2 and EE38 respectively) takes less than 1 percent of the
time T1. The most part is needed for creating the order which is spanned
by these generators.

disc(Op) denotes the discriminant of O and ind;(Of) the index of O over
the finite equation order OF , of E. Op . is defined in the following way:
Let F/k be a function field with finite maximal order O and E = F(y),
g(y) = 0 for some irreducible polynomial

An—1 a

gty =t"+ 2t e P,

bnfl bO
where a;,b; € OP. If d is a (lowest) common multiple of by, . .., b,_1, then dy
is a zero of the irreducible polynomial

(d)™ + gyt 4 Dge,
bn—l bO

which has coefficients in Op. We set Op . := Op[dy]. Now, T2 is the time
which the Round 2 algorithm needed to compute the maximal order as an

71
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overorder of O Pg,eq. Since in our cases indl((’)g) is an ideal which has prime
factors of fairly high degree, this method soon reaches its limits. To overcome
this problem and get more realistic times to compare our algorithm with, in
most of the examples we also include the time T3 which the Round 2 algo-
rithm needed to compute Op as an overorder of another order Op, 2 O g’eq,
whose index in O has less prime factors with smaller powers. We denote
this index by indy(Og). To get OF, we set h = % € E[t]. Then gis a
polynomial with coefficients f3y, ..., 3,_1 € O and

Og,l = Oﬁ[ﬁOa s 7671—1]

is an overorder of Op . (see [BLPI3, p. 88]).

The corresponding symbols disc(OF), ind;(OF) and ind»(OF) for the infi-
nite maximal orders are defined in an analogous way.

We write “?77” in the cases where the computation of the maximal order
was not finished after more than two days.

All computations have been carried out with the computer algebra system
MAGMA [CT04] on a Pentium IV, 2.8 GHz, 1024 MB-RAM.

5.1 Kummer extensions

In this section we look at three groups of examples of Kummer extensions
E/F. We examine the runtime of both methods with increasing degree n
of the extension. We always start with a field k& of p elements, p a natural
prime, then adjoin a primitive n-th root of unity to k to get the field F,, ¢
a power of p. In the third row of each table we print the defining equation
f(z, p) = 0 of the function field F' =T (z, p).

In the first group of examples we compute the finite maximal order OJ of E.
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1. Tl =62s T2=0621s T3 =104s

q=5, [F:F,(z)]=5 n=11

F=F,z,p): pP°+4p*+220*+2p* +2°p+2+1=0

11 10, .8 T4 ,5 4, .2
_ . n __ _ _ x4 e+ttt +4x+1 4 1 2
E=F(y): y"—u=0, u= g S — Pt mmpt e
0

disc(O2) = p1°pi pipi’p20ne pr pip piopipiopioniipiopioni?
ind; (OF) = p1*p3’p3*p7 pa piipionisniinis
2. Tl =69s T2 =570s T3 = 146s

q="5% [F:F,(z)]=5 n=12

F=F,(x,p): p°+4p*+220* +2p> +2°p+2+1=0

1.11 xlO 1.8 :E7 1.5 1.4 1.2 x
E=Fy): y"—u=0, u= 44210+ mti4mg+mi44 4244 +1p4 + ;p21+3/)+x2
disc(Of) = pi'pi'pitpitpilpi ot pilpi piipiiptiptiotiniipiipiipiiniiniiniipss
ind; (OF) = pI*p3 P3P P P2 P PP IopTSpTanSs
ind,(02) = pi
3. T1 =100s T2 =1533s T3 = 248s

q=>5% [F:F,(z)]=5 n=13

F=F,(x,p): p°+4p*+220* +2p> +2°p+2+1=0

11 10 8 7 5 4 2
_ . n _ _ x4t e+ttt +4x+1 4 1 2
E - F(:U) y —Uu= 07 u = $4+4$3+$+4 p _'_ x2+3p+ xr

. 0 _ 1120120120122 1242 1242124212,0120 12,12, 12121122 12421242124212, 12,12, 12

dlSC(OE) = P%QP%QP?QP%P?QP?QPz2p§2ps1)213%gpﬁp12131313141315131613171318131913201321
P22P23P21P25 P26 P27 P28 P20P30P31 P32

. 16641664266 1266 266 166 (66 (66 166 1166 166 1661266 266 1266 1266 166 66 (66 166 166,178

lndl(o ) = P1 P2 P3Py Pe P7 Ps P11P12P13P15P16P17P 18P 19P20P21 P22 P23 P24 P25P 33

B
indy(Of) = pi3
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4. T1 =145s T2 =1913s T3 = 305s

q=55 [F:F,(z)=5 n=14

F=F,z,p): p°+4p*+22p*+2p0* +2°p+2+1=0

11 10, .8 7.5 4, .2
_ . n __ _ _ z Hx Pt P+ttt +4x+1 4 1 2

. 0\ _ 1134113,13,2134113¢11341 13113, 13,.13,:134113¢113 113, 13,.13,.13,: 13,1313, 13
dlSC(OE) = PP P3P P Pe P PR Py PioP 1P 12P13P1aP 15 P16 P 17P 18P 19P20 P21
13(113,213,:13,,13
P2aPasPaa PP
. 0) 787878178178 278278 T8 T8 T8 T8 T8 T8 78, 78,91
lndl(OE) = PP P3P P5 Pe PioP11P12P13P14P15P16P19P20P27

iﬂdz(opg) = py

D. T1 =338s T2 =3441s T3 =603s

q=>5% [F:F,(x)]=5 n=16

F=F,x,p): p°+4p*+2°0* + 20" +2%p+2+1=0

_ . n__ . _ B e e L A U S ] 1 2
E - F(y) y u = O? u = $4+4$3+1‘+4 p _'_ x2+3p + T

. 0\ — 1150150151515 1515 1511541154a1511515 151515151 15,:15,115,215
disc (O ) = 9%513%513:{,513411513?513?5137 P3Py PioP11P12P13P1aP15P16R17P18P19P20 P21
150154215, 15..15
P2aPa3P2iPasPasParPasP20P30P31 P32
. 0) _ 11105421052105105 105105 1 105 11 105 11 105 13 1051110521052 1051051105105 - 105
1nd1((’)E) =P P P3Py P P7 P P11 Pi2 P13 Pis Pie Pi7 Pis Pig Pao P21
10511051105 - 105 - 120
P22 P23 Pas Pas Pa3
. 0\ _ 15

6. T1 =843s T2 =10209s T3 = 1305s

q=5% [F:F,(z)=5 n=24

F=TF,z,p): p°+4p*+220° + 20" +2°p+2+1=0

11 10, .8 7.5 4, .2
_ . n __ _ _ ozt P4+ P+ttt +4x+1 4 1 2
E_F(y) y U—O, U= i +dx3+2+4 p +12+310+x

. 0\ _ 11231123112311231123,223,.23,:23 23 23,.23,.23,.23,.23,.23, 23 23,.23,.23,-23,.23 .23
dlSC(OE) = PP P3P P s P PR P PIoRT I P12P 3P 1P P16 P17 P18 P19P20 P21 P22
. 0) _ (1253125301253 1253 12531253 2253,2253 . 253,253, 253,253 253, 253 (1253 ,,276
1nd1((’) )—P1 PoPsTRLTPs R PR R P10 P P12 P13 P PTs Pas

E
indy(OF) = p33

The difference between the next examples and the previous is that the in-
dices ind;(O2) and ind»(Of) have prime factors of higher degree. Here we
observe that our method yields much better results compared to the Round
2 algorithm.
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7. Tl =5s T2=238ls T3 =539s

q=3% [F:F,(z)]=2 n=28

F=F(z,p): pPP+2p+2°+2+1=0

E=F(y): y"—u=0, u=—5p+a’
disc(Of) = pi'pTp3 ey p3 nd 7"
indl(Og) = p%446

indg((’)g)

8. Tl =14s T2 =15989s T3 =4160s

q=3", [F:Fy(x)] =2, n=231

F=F,(x,p): p+2p+2°+2+1=0

E=F(y): y"—u=0, u=—5p+a’
disc(OF) = pPpPp PR pRppY
ind;(Of) = pi™®
ind,(OF) = pf°

9. Tl =15s T2 =06894s T3 =1720s

q=3% [F:F,(z)]=2, n=40

F=F,(x,p): pP+2p+2°+2+1=0

E=F(y): y"—u=0, u=—5p+a’
disc(09) = pppPpPppippiops?
ind, (02) = pi

indz(Op) = pf°
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10. T1=37s T2=777 T3 =29264s

¢=3" [F:Fy(r)] =2, n=061

F=F,z,p): pP+2p+2+2+1=0

E=F(y): y"—u=0, u=kp+a’
disc(Op) = pippspf P p p?
indy(Of) = pi'™

indz((’)g) = pY°

11. T1=975s T2=777 T3 =777
q=3" [F:F,(x)]=2, n=100

F=F,z,p): pP+2p+2+2+1=0

E=F(y): y"—u=0, u=-5p+a’

disc(Op) = P15 py"pi"p5 g P70 w5

ind; (OF) = p{*»™*

12. T1 =367s T2=777 T3=777
q=3" [F:F,(x)]=2, n=122

F=F,z,p): p*+2p+23+2+1=0

E=F(y): y"—u=0, u=5p+a’

disc(Op) = pi*'ps* s> i p3™ pi” 07"t

ind; (O) = p3922

13. T1 =1751s T2=777 T3 =777

q=32 [F:F,(z)]=2, n=140

F=F,z,p): p*+2p+23+2+1=0

E=F(y): y"—u=0, u=5p+a?
disc(Of) = pl3oplaopla0p 1301301139 1391395130

ind, (OF) = pioT
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14. T1 =3276s T2=777 T3=77
q=3% [F:F,(z)]=2, n=160

F=F,z,p): pP+2p+2*+z+1=0

E=F(y): y"—u=0, u=—5p+a’

disc(Og) = pi™ps 5 i ps pe™ i ps™ ps™

ind; (OQ) = piosst

In the last group of examples in this section we compute the infinite maximal
order 0% of the Kummer extension £.

15. Tl =1s T2=33s T3 =8s
q=3% [F:F,(z)]=3, n=5

F=F,x,p): p>—(z+1)p*+2xp—2°=0

E=F(y): y'"—u=0, u=(2*+2)p*+(@*+1)p+1

disc(O%) = pt

ind, (OF) = p%m

ind(O%) =

16. Tl =3s T2=437s T3 =43s
q=3% [F:F,(z)]=3, n=10

F=F,x,p): p>—(z+1)p*+2xp—2°=0

E=F(y): y"—u=0, u="+2)p"+ @ +1)p+1

disc(O%) = p}

1nd1((9°°) = pPo°

ind(O%) = pf*
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17. Tl =12s T2 =3459s T3 = 212s
q=3% [F:F,2)]=3, n=16
F=F,z,p): p*—(x+1)p*+2zp—2°=0
E=F(y): y"—u=0 u=@*+2)p*+@@*+1)p+1
disc(0F) = p®
1nd1((’)°°) = p70
indy(OF) — pl©®
18. Tl =18s T2 =6400s T3 = 283s
q=3 [F:F, x)]=3, n=20
F=F,z,p): p’—(x+1)p*+22p—2°=0
E=F(y): y"—u=0, u=(@+2)p*+@*>+1)p+1
disc(0F) = p}®
ind, (OF) = pso0
indg( )

19. T1 =385s T2 =32722s T3 = 1645s
q=3" [F:F,(x)]=3, n=23

F=F,z,p): p*—(x+1)p*+22p—2°=0

E=F(y): y"—u=0 u=@*+2)p*+@*+1)p+1

disc(0F) = p??

ind; (O%) = pi™

indy (O%) = p246
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20. T1 =2060s T2=777 T3 =12302s

q—328, [F i F,(x) =3, n=29

Fo(z.p): p°—(x+1)p*+20p—2"=0

Fly): y"—u=0, u=(2*+2)p*+ (2> +1)p+1

dlsc((’)oo) = p38
1nd1((9%°) = pi2o
ind,(O%) = pios

5.2 Artin-Schreier-Witt Extensions

In the first group of examples (1. - 10.) we compute the finite maximal order
of different Artin-Schreier extensions. In every step we increase the degree p
of the extension.

1. Tl =3s T2=22s T3 =16s

p=5, q=5, [F:F,x)] =3,

F=Fy(z,p): p*—(x+1)p"+2zp—2°=0

E=F(y): y-y=u, u=_t=p’+ 2ty L
2) = pipSpSpipipipipipiniont,

ind; (OF) = piop3°pitpipspndpipinSontipis
2)
E

 164,16,.16,.4
= P1 P2 P3 P12

2. Tl =4s T2=77s T3 =18s

p="7 q=7, [F:F,x)] =3,

F=Fy(z,p): p*—(x+1)p"+2zp—2°=0

E=F(y): y—y=u u=fp’+sttlyy L
2) = PP PPt ps P P s s PIGP TIPSR I3PIIRTE

ind;(Op) = pi PSPPI p3 e P P P P1oRTIPISPISPIIP1E
?)

 L12,12,.12,.3
= P17 P2 P3P
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3. Tl =5s T2=499s T3 =063s
p=11, ¢=11, [F:F,(x)] =3,

F=F,z,p): p*—(x+1)p*+2zp—2°=0

E=F(y): y-y=u, u= g0+ + %

x3—1 261

disc(Op) = pPpSpS p3 p2 pg p2 P p3 P07
indi (OF) = p}*p3Pp3 pi pip 7 P piop 1
indy(OF) = p°p3’p3°

4. T1 =20s T2 =15073s T3 = 1829s
p=23, q=23, [F:Fy(z)]=3,
F=F,z,p): pP—(z+1)p*+22p—2°=0
E=F(y): y’—y=u, u:x§—i1p2+x;ffr1p+
disc(Op) = pi™p3p3pi "3 ps P ps" pa piopit
mdl((’)g) — p%199p%199’3:15199‘342131p§31p§31p$31p§31p331p%glpﬁl
0y)

indy(Of) = pi*p3'p3’

d. Tl =36s T2 =257512s T3 = 4240s

p=3l, ¢=31, [F:F,(x)] =23,

F=F,z,p): p*—(x+1)p*+22p—2°=0

E=Fy): y-y=u, u=g5p7+"55p+ %

disc(Og) = p1*0p3 p3 p p2 pe p7 e P pIop T PISRTEpTap EpTeRT?

ind (O) = 3B 2B I p L LI I 5o 3
0
E

indy(OF) = pOps°ps°
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6. T1 =475s T2 =691322s T3 = 352905

p=2>53, ¢q=053, [F:F,x)]=3,

F=F,z,p): p*—(x+1)p*+22p—2°=0

_ _ _ b 2 2642241 1
E=F(y): y-y=u u=gp+555p+:

. 0\ _ 312,312,312, 104 1 104,104 1 1042104 1 104,104,104
dlSC(OE) =PToPPs P Py Pe P7 Ps P Pio Pii
. 0 67345 67341y67311y 1326, 1326 3 13261326 131326 5 1326111326 11326
1nd1((9E) Py P3PPSR P TP Py P P

ind(Of) = pi™ps™ps™

7. T1=300s T2=7°77 T3 =79350s

p=061, ¢=61, [F:F, x)]=3,

F=Fy(z,p): p*—(x+1)p"+2zp—2°=0

_ . _ _ x> 2 2842241 1

E=F(y): yw-y=u u=g=p+55p+
. 0\ _ 1136044360136042120,2120 31201 120120,212031201120,1120,2120 112041120, 120,.120
dlSC(OE) = PPy Py RLTR T PeT PP P P PiT Pia Pas Pug Pis Pis Pi7
. 0\ _ 18970.8970,,8970 1770 1770 2 1770 13 1770 1770 12 177044 177041 177012 1770 11 1770
lndl(OE) = PrUPYT P P P P P RS P P10 P Piet Pis

1770, 1770, 1770, 1770

Pia P15 Pis Pir
. 0\ _ +1120,,120,,120
lndQ(OE) =P P Pps

8. T1=488s T2=777 T3=777

p="T1, ¢=T1, [F:F,(2)] =3,

F=F,x,p): p>—(z+1)p*+2xp—2°=0

. o o 5 2 6+ 2+1 1
E=F@y): yw-y=u u=_3=p+55p+ 5
. 0 4202420 (2420 1+ 140 1140 1 140 1, 140 1 140 4 140 1 140 41 140 3 140 4 140
dlSC(OE) PP P3Py P Ps P7 Ps Po Pio Pir Pi2 Pis
0
E

. L2215 12215312215, 2015) 2015 52415 2415, 24151, 2415, 241552415 524152415
1nd1((9 ) P3™7 Py P Ps TP PR TPy P10 P11 P12 PRI
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9. T1 =1839s T2=777 T3 =777

p=283, ¢=283, [F:F,x)] =3,

F=Fy(x,p): p*—(x+1)p*+2zp—2"=0

1'5 ZL‘G 1'2
E=F(y): y—y=u u=gp+Hp+%
disc(O2) = p1P2p322p322p 6iptoip ttpiiipltiplttpitinitiplss

: 0\ __ 416769,,16769,,16769.3321,,3321,.3321,,3321,.3321,,3321,,3321,.3321,,3321
ind;(OR) = pi6709p 1676916769 352153321 1y8521 3521 3321 5 3321y 3821 35321 5 33

10. T1 =62226s T2=777 T3=777

p=97, ¢=97, [F:F,x)] =3,

F=F,z,p): pP—(x+1)p*+22p—2°=0

E=F(y): y—y=u u=-f-p?+28tlyp L

x3—1 z6—1
. 0\ _ 15765765762 192,2192,2192,.192,. 192,192,192, 192192, 192,.192,.192,.192,.192
dlSC(OE) S (RS S LE S R tAt i U N A T R (T RN VIR ST ST Ut
. 0) _ 122992,.22992, 22092 4560 14560 (4560 114560 24560 114560 (14560 24560 1456014560
lﬂdl(OE) =PTTTRYTTRTTP P PsT P PR Po Pio Pir Pi2 Pi3
4560 14560 144560 14560
Pia Pis Pie P17

In the next examples (11. - 17.) we consider a fixed Artin-Schreier extension
E/F and compute the finite maximal order of constant field extensions of F.

11. Tl =9s T2=1141s T3 =192s

p=13, ¢=13, [F:F,(x)] =3,

F=Fyz,p): p’—(x+1)p"+22p—2°=0

E=F(ly): y—y=u, u=-f-p?+ o=, L
disc(Of) = pP?po2pSp3 p2 e 2 p3 p3 pIopTinisnispTints
ind; (Og) = pP*p5p3*pSopStpiptippstndontepioptiptinitnTs
2)
FE

indy(OF) = piipiiniipis
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12. Tl =14s T2 =2958s T3 = 226s
p=13, ¢=13° [F:F,(z)] =3,

F=F,z,p): p*—(x+1)p*+22p—2°=0

E=F(y): y—y=u, u=fp+2ttyy L

disc(Op) = p*p3’p3p3"p3'ps P P2 ps piopTip o 3R 0TS

ind (OF) = pP PP p3 piopLo e ppe pS piop tntontsptip it

indy(OF) = pispTipTapis

13. T1 =54s T2 =8990s T3 = 559s
p=13, ¢=13" [F:F, ()] =3,

F=F,x,p): p>—(z+1)p*+2xp—2°=0

E=F(y): y'—y=u, u= w?ipo + $6gj;$_2f“1p+ %5

disc(Op) = pi*p3’p3p3 ' p3 P57 pa s plop iR TanTapTiPTsPTsPITRIS

ind (OF) = pP P3P piopeope p P pe pS piop R n PR e antopten s
indy(Og) = pispipispis

14. Tl =81s T2 =20004s T3 = 1148s
p=13, ¢=13% [F:F,(z)] =3,

F=F,x,p): p*—(x+1)p*+2zp—2°=0

E=Fly): y-y=u, u= 3507+ p+ %

disc(Og) = p*p3 P53 p3 P2 ps P pe s piopTip TR R TIPSR ePT 7RIS

ind;(Op) = pP P3P P pe pe e pe Pl iRt s s n an ontepTs
indy(OF) = pispTipiepis
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15. T1=163s T2 =777 T3 = 1708s

p=13, ¢=13%  [F: F,(z)] =3,

F=Fy(x,p): p*—(x+1)p*+2zp—2"=0

E=F(y): ¢ —y=u, u=g=p7+Hp+ %

disc(OF) = p[2ps2pi2p3 e pd p2 p3tpd piopTipiopispTintapisptrianionss

ind; (OF) = pP**p3*p3 pCplppeppatniontintsnintinitnienttnienionsonit
Op) =

: 249494, 12
inds( = PisPioP20P21

16. T1=247s T2=777 T3 = 2499s

p=13, ¢=13%" [F: F,(z)] =3,

F=F,z,p): p—(z+1)p*+22p—2°=0

E=F(y): y—y=u, u=_fop?+22tlyp L
disc(OF) = p{2ps2p52p3 p2 pe p2 p3 ps pispTipionispTintanisnitnis
ind; (OF) = pP**p3 3 pCpippppiniontntntintintinteninitnts

. 24,.24,.24,.12
1nd2( = PisP17P18P19

17. T1 =6016s T2 =777 T3 = 16860s

p=13, ¢=13"  [F:F,(z)] =3,

F=F,z,p): p—(z+1)p*+22p—2°=0

E=F(y): ¢ —y=u, u=g=p7+Hp+ %
disc(OF) = p{2ps2p52p3 p2 pd p2 p3 ps piopTipispispTintapisnitnis
ind; (OF) = pP**p3 3 pCpippppitnionintntintintintenitnitnts

24,.24,.24,.12
1nd2( = P1eP17P18P19

In the last examples we compute the finite maximal order of Artin-Schreier-
Witt Extensions E/F of degree p*, p=3,5,7 and p3, p = 2, 3, respectively.
Here o : W,(F) — W, (F), n = 2,3, is the Artin-Schreier-Witt map which
was defined in Proposition
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18. Tl =3s T2=33s

p=3, ¢=3, [F:F,(x)]=2,

r,p): pP+d+r+1=0

F=F,(
E:F((ylayQ)): p((yl’yz)) — (m%p—i_‘rzuﬁp‘FSU)
disc(OF) = pipf

indy(OF) = pi*pipipipdpdpiipips?

19. T1 =658s T2 = 2175s

p=>5, ¢q=5, [F:F,(x)]=2,

F=F,x,p): pP+2+2+1=0

E=F((ynv2): o((y1,92) = (ﬁp—l—x%ﬁ;ﬂ-x)

20. T1 =542s T2 =777

p="7 q=7, [F:F,(x)] =2,

F=F,x,p): p+a®+z2+1=0

E=F((y,92):  o((w,92) = (e + 2% 7530+ 7)

21. T1 =451s T2 =777

p=2 q=2, [F:F,(x)]=3,

F=F,(x,p): p>—p*+2xp—2°=0

E = F((y17y27y3)):
o((W1,y2,03) = ((@+1)p* + Zgp+a®, (@3 +22)p* + g+, 20> + (@O + Dp+ )

22. T1 = 34586s T2 =777

p=3, ¢=3, [F:F,x)]=2,

F=F,x,p): p+a®+z2+1=0

E= F((y17y27y3)):
o((y1,92,98) = (@ +2)p+ 5, @+ 2*)p+ o5, 55p 40 +2)
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List of Symbols

F, Fk
E, E/F
@)

P, Q
P'|P

Pr

v

vp

Op

Op
e(P'|P)
F(P1P)
CI(R, F)
S

Os
Op(E)
Os(E)
Xy £/F)(T)
Z

field

rational function field

function field

function field extension

valuation ring

places of a function field

extension of places

set of places of F

valuation

valuation for the place P

valuation ring of P

residue class field Op/P of P
ramification index of P’|P

relative degree of P'|P

the integral closure of the ring R in F
subset of Pg

holomorphy ring

Cl(Op, FE)

Cl(Os, E)

the the minimal polynomial of y € E over F

rational integers

87
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LIST OF SYMBOLS

finite field of ¢ elements

rational prime

Frobenius map

ring of Witt vectors over £

ring of Witt vectors of length n over

the fixed field of the subgroup H of the Galois
group of the extension L/F

the Galois group of the subfield E of the Ga-
lois extension L/F

the order of the (finite) group G
greatest common divisor

outer direct product

inner direct product

direct sum

norm map
trace map

surjective G-homomorphism, see (221.1)
the kernel of p

see definition on p. 21

see definition in the proof of Theorem P37
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C

completely decomposed........... (§
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— non-degenerate................ 20
P-integral ........................ O
place...... ... 21
prime element .................... 21
R

ramification index................ 0
ramified . ....... ... ... . L 0
—totally ........... ...l 0
relative degree.................... 0
residue class field.................
Ring of Witt vectors............ T4
—oflengthn.................... 16
R-integral ............ ... ... ... @
S

separating element ...............
S-integral ............... . )
Strict Triangularity............... 21
Strong Approximation............
U
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Abstract

Let F be a field and L be an arbitrary (finite or infinite) Galois extension of
F with Galois group G. We give a detailed presentation of general Kummer
theory, which gives us an abstract tool to characterize all Abelian extensions
E of F with E C L: Let A be a subset of L™ which has a group structure
which is compatible with the coordinatewise operation of G on A. Then
A is called a G-module. Furthermore let o : A — A be a surjective G-
homomorphism with finite cyclic kernel ji,,. Then there is a bijection between
the set of subgroups A of A with p(AN F™) C A C AN F™ and the set of
Abelian extensions E of F of exponent |u,| (with £ C L).

We then use general Kummer theory to describe Kummer and Artin-Schreier-
Witt extensions. Suppose F' contains the set of all n-th roots of unity, where
the characteristic of F' is zero or coprime to n. Then a Kummer extension of
F'is an Abelian extension of exponent n. Abelian extensions F' of exponent
p", where p > 0 is the characteristic of F', are called Artin-Schreier-Witt
extensions.

Let k be a finite (in particular perfect) field and F'/k be an algebraic function
field over k, i.e.
F = k(z,p) with f(z,p) =0

for some irreducible polynomial f € k[z, t] which is monic and separable with
respect to t. Let ) # S be a proper subset of the set of places Pr of F' and
E a cyclic Kummer or Artin-Schreier-Witt extension of F'. The main result
of this thesis is the development of a procedure to compute the ring Og(F)
of elements of F/ which are integral at all places of S. We present algorithms
which determine a set © of Og-generators of Og(E).

This is done by computing for each P in § a set {2p of S-integral generators
of Op(F) over Op. The set which consists of the union of all Qp is the
sought-after set Q of Og-generators of Og(F). Q is finite since the sets (p
are equal for all but finitely many P € S.

At the end we give examples which demonstrate the efficiency of our method
for computing integral closures by comparing it with a general method, which
is based on the Round 2 algorithm.
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